Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular effects of relaxin: from basic science to clinical therapy

Abstract

Although substantial advances have been achieved in recent decades in the clinical management of heart diseases, new therapies that provide better or additional efficacy with minimal adverse effects are urgently required. Evidence that has accumulated since the 1990s indicates that the peptide hormone relaxin has multiple beneficial actions in the cardiovascular system under pathological conditions and, therefore, holds promise as a novel therapeutic intervention. Clinical trials for heart failure therapy using relaxin revealed several beneficial actions. Here we review findings from mechanistic and applied research in this field, comment on the outcomes of recent phase I/II clinical trails on patients with heart failure, and highlight settings of cardiovascular diseases where relaxin might be effective.

Key Points

  • Relaxin is a naturally occurring peptide hormone with a broad array of cardiovascular actions demonstrated in experimental models

  • Cardiovascular tissues are equipped with relaxin receptors that are activated by circulating relaxin or regionally generated relaxin and mediate a range of bioactivities via diverse signaling pathways

  • Experimental research has documented multiple cardioprotective actions of relaxin against key disease components, including myocardial injury, vasoconstriction, oxidative stress, fibrosis and inflammation

  • Clinical trials have also documented vasodilatory action of relaxin in patients with acute heart failure

  • Clinical trials have demonstrated that relaxin has a good safety profile when administered either intravenously or subcutaneously over a short or long period

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signaling pathways activated by the relaxin receptor RXFP1.
Figure 2: A summary of the cardiac protective actions of relaxin based on experimental studies in a variety of animal models.

Similar content being viewed by others

References

  1. Sherwood, O. D. Relaxin's physiological roles and other diverse actions. Endocr. Rev. 25, 205–234 (2004).

    CAS  PubMed  Google Scholar 

  2. Sherwood, O. D. & O'Byrne, E. M. Purification and characterization of porcine relaxin. Arch. Biochem. Biophys. 160, 185–196 (1974).

    CAS  PubMed  Google Scholar 

  3. Hudson, P. et al. Structure of a genomic clone encoding biologically active human relaxin. Nature 301, 628–631 (1983).

    CAS  PubMed  Google Scholar 

  4. Hudson, P. et al. Relaxin gene expression in human ovaries and the predicted structure of a human preprorelaxin by analysis of cDNA clones. EMBO J. 3, 2333–2339 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bathgate, R. A. D., Hsueh, A. J. & Sherwood, O. D. Physiology and molecular biology of the relaxin peptide family in Physiology of Reproduction (eds Knobil, E. & Neill, J. D.) 679–770 (Elsevier, San Diego, 2006).

    Google Scholar 

  6. Samuel, C. S., Du, X. J., Bathgate, R. A. D. & Summers, R. J. 'Relaxin' the stiffened heart and arteries: The therapeutic potential for relaxin in the treatment of cardiovascular disease. Pharmacol. Therap. 112, 529–552 (2006).

    CAS  Google Scholar 

  7. Bani, D. Relaxin: a pleiotropic hormone. Gen. Pharmacol. 28, 13–22 (1997).

    CAS  PubMed  Google Scholar 

  8. Samuel, C. S. Relaxin: antifibrotic properties and effects in models of disease. Clin. Med. Res. 3, 241–249 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lenhart, J. A., Ryan, P. L., Ohleth, K. M., Palmer, S. S. & Bagnell, C. A. Relaxin increases secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 during uterine and cervical growth and remodeling in the pig. Endocrinology 142, 3941–3949 (2001).

    CAS  PubMed  Google Scholar 

  10. Lenhart, J. A., Ryan, P. L., Ohleth, K. M., Palmer, S. S. & Bagnell, C. A. Relaxin increases secretion of tissue inhibitor of matrix metalloproteinase-1 and -2 during uterine and cervical growth and remodeling in the pig. Endocrinology 143, 91–98 (2002).

    CAS  PubMed  Google Scholar 

  11. Unemori, E. N. et al. Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Hum. Reprod. 14, 800–806 (1999).

    CAS  PubMed  Google Scholar 

  12. Hsu, S. Y. et al. Activation of orphan receptors by the hormone relaxin. Science 295, 671–674 (2002).

    CAS  PubMed  Google Scholar 

  13. Bathgate, R. A., Ivell, R., Sanborn, B. M., Sherwood, O. D. & Summers, R. J. International Union of Pharmacology: Recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol. Rev. 58, 7–31 (2006).

    CAS  PubMed  Google Scholar 

  14. Hawkes, C. & Kar, S. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Res. Rev. 44, 117–140 (2004).

    CAS  PubMed  Google Scholar 

  15. Pirola, L., Johnston, A. M. & Van Obberghen, E. Modulation of insulin action. Diabetologia 47, 170–184 (2004).

    CAS  PubMed  Google Scholar 

  16. De Meyts, P., Palsgaard, J., Sajid, W., Theede, A. M. & Aladdin, H. Structural biology of insulin and IGF-1 receptors. Novartis Found. Symp. 262, 160–171 (2004).

    CAS  PubMed  Google Scholar 

  17. Hsu, S. Y. New insights into the evolution of the relaxin-LGR signaling system. Trends Endocrinol. Metab. 14, 303–309 (2003).

    CAS  PubMed  Google Scholar 

  18. Bullesbach, E. E. & Schwabe, C. The relaxin receptor-binding site geometry suggests a novel gripping mode of interaction. J. Biol. Chem. 275, 35276–35280 (2000).

    CAS  PubMed  Google Scholar 

  19. Bullesbach, E. E. & Schwabe, C. The trap-like relaxin-binding site of the leucine-rich G-protein-coupled receptor 7. J. Biol. Chem. 280, 14051–14056 (2005).

    PubMed  Google Scholar 

  20. Halls, M. L. et al. Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J. Pharmacol. Exp. Ther. 313, 677–687 (2005).

    CAS  PubMed  Google Scholar 

  21. Sudo, S. et al. H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J. Biol. Chem. 278, 7855–7862 (2003).

    CAS  PubMed  Google Scholar 

  22. Scott, D. J. et al. Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules. J. Biol. Chem. 281, 34942–34954 (2006).

    CAS  PubMed  Google Scholar 

  23. Scott, D. J. et al. Defining the LGR8 residues involved in binding insulin-like peptide 3. Mol. Endocrinol. 21, 1699–1712 (2007).

    CAS  PubMed  Google Scholar 

  24. Hossain, M. A. et al. The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors. J. Biol. Chem. 283, 17287–17297 (2008).

    CAS  PubMed  Google Scholar 

  25. Hopkins, E. J., Layfield, S., Ferraro, T., Bathgate, R. A. & Gooley, P. R. The NMR solution structure of the relaxin (RXFP1) receptor lipoprotein receptor class A module and identification of key residues in the N-terminal region of the module that mediate receptor activation. J. Biol. Chem. 282, 4172–4184 (2007).

    CAS  PubMed  Google Scholar 

  26. Halls, M. L., Bathgate, R. A. & Summers, R. J. Relaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms. Mol. Pharmacol. 70, 214–226 (2006).

    CAS  PubMed  Google Scholar 

  27. Nguyen, B. T., Yang, L., Sanborn, B. M. & Dessauer, C. W. Phosphoinositide 3-kinase activity is required for biphasic stimulation of cyclic adenosine 3', 5'-monophosphate by relaxin. Mol. Endocrinol. 17, 1075–1084 (2003).

    CAS  PubMed  Google Scholar 

  28. Nguyen, B. T. & Dessauer, C. W. Relaxin stimulates protein kinase Cζ translocation: requirement for cyclic adenosine 3', 5'-monophosphate production. Mol. Endocrinol. 19, 1012–1023 (2005).

    CAS  PubMed  Google Scholar 

  29. Halls, M. L. et al. Relaxin family peptide receptor (RXFP1) coupling to Gαi3 involves the C-terminal Arg752 and localization within membrane raft microdomains. Mol. Pharmacol. 75, 415–428 (2009).

    CAS  PubMed  Google Scholar 

  30. Kompa, A. R., Samuel, C. S. & Summers, R. J. Inotropic responses to human gene 2 (B29) relaxin in a rat model of myocardial infarction (MI): effect of pertussis toxin. Br. J. Pharmacol. 137, 710–718 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Halls, M. L. et al. RXFP1 couples to the Gα-Gβγ-PI3K-PKCζ pathway via the final 10 amino acids of the receptor C-terminal tail. Ann. N. Y. Acad. Sci. 1160, 117–120 (2009).

    CAS  PubMed  Google Scholar 

  32. Ivell, R. & Einspanier, A. Relaxin peptides are new global players. Trends Endocrinol. Metab. 13, 343–348 (2002).

    CAS  PubMed  Google Scholar 

  33. Zhang, Q., Liu, S. H., Erikson, M., Lewis, M. & Unemori, E. Relaxin activates the MAP kinase pathway in human endometrial stromal cells. J. Cell. Biochem. 85, 536–544 (2002).

    CAS  PubMed  Google Scholar 

  34. Moore, X. L. et al. Relaxin antagonizes hypertrophy and apoptosis in neonatal rat cardiomyocytes. Endocrinology 148, 1582–1589 (2007).

    CAS  PubMed  Google Scholar 

  35. Palejwala, S., Stein, D., Wojtczuk, A., Weiss, G. & Goldsmith, L. T. Demonstration of a relaxin receptor and relaxin-stimulated tyrosine phosphorylation in human lower uterine segment fibroblasts. Endocrinology 139, 1208–1212 (1998).

    CAS  PubMed  Google Scholar 

  36. Conrad, K. P. & Novak, J. Emerging role of relaxin in renal and cardiovascular function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R250–R261 (2004).

    CAS  PubMed  Google Scholar 

  37. Cosen-Binker, L. I., Binker, M. G., Cosen, R., Negri, G. & Tiscornia, O. Relaxin prevents the development of severe acute pancreatitis. World J. Gastroenterol. 12, 1558–1568 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Masini, E. et al. Protective effects of relaxin in ischemia/reperfusion-induced intestinal injury due to splanchnic artery occlusion. Br. J. Pharmacol. 148, 1124–1132 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, J. et al. Effect of relaxin on myocardial ischemia injury induced by isoproterenol. Peptides 26, 1632–1639 (2005).

    CAS  PubMed  Google Scholar 

  40. Boehnert, M. U., Hilbig, H. & Armbruster, F. P. Relaxin as an additional protective substance in preserving and reperfusion solution for liver transplantation, shown in a model of isolated perfused rat liver. Ann. N. Y. Acad. Sci. 1041, 434–440 (2005).

    CAS  PubMed  Google Scholar 

  41. Perna, A. M. et al. Novel drug development opportunity for relaxin in acute myocardial infarction: evidences from a swine model. FASEB J. 19, 1525–1527 (2005).

    CAS  PubMed  Google Scholar 

  42. Bani, D., Masini, E., Bello, M. G., Bigazzi, M. & Sacchi, T. B. Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart. Am. J. Pathol. 152, 1367–1376 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nistri, S., Chiappini, L., Sassoli, C. & Bani, D. Relaxin inhibits lipopolysaccharide-induced adhesion of neutrophils to coronary endothelial cells by a nitric oxide-mediated mechanism. FASEB J. 17, 2109–2111 (2003).

    CAS  PubMed  Google Scholar 

  44. Failli, P. et al. Relaxin up-regulates inducible nitric oxide synthase expression and nitric oxide generation in rat coronary endothelial cells. FASEB J. 16, 252–254 (2002).

    CAS  PubMed  Google Scholar 

  45. Masini, E. et al. Relaxin counteracts myocardial damage induced by ischemia-reperfusion in isolated guinea pig hearts: evidence for an involvement of nitric oxide. Endocrinology 138, 4713–4720 (1997).

    CAS  PubMed  Google Scholar 

  46. Bani-Sacchi, T., Bigazzi, M., Bani, D., Mannaioni, P. F. & Masini, E. Relaxin-induced increased coronary flow through stimulation of nitric oxide production. Br. J. Pharmacol. 116, 1589–1594 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Masini, E. et al. Protective effect of relaxin in cardiac anaphylaxis: involvement of the nitric oxide pathway. Br. J. Pharmacol. 137, 337–344 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilson, B. C., Connell, B. & Saleh, T. M. Relaxin-induced reduction of infarct size in male rats receiving MCAO is dependent on nitric oxide synthesis and not estrogenic mechanisms. Neurosci. Lett. 393, 160–164 (2006).

    CAS  PubMed  Google Scholar 

  49. Dschietzig, T. et al. Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-κB. Circ. Res. 92, 32–40 (2003).

    CAS  PubMed  Google Scholar 

  50. Kerchner, L. J. et al. Evidence against the hypothesis that endothelial endothelin B receptor expression is regulated by relaxin and pregnancy. Endocrinology 146, 2791–2797 (2005).

    CAS  PubMed  Google Scholar 

  51. Dschietzig, T., Bartsch, C., Stangl, V., Baumann, G. & Stangl, K. Identification of the pregnancy hormone relaxin as glucocorticoid receptor agonist. FASEB J. 18, 1536–1538 (2004).

    CAS  PubMed  Google Scholar 

  52. Dschietzig, T., Bartsch, C., Baumann, G. & Stangl, K. RXFP1-inactive relaxin activates human glucocorticoid receptor: further investigations into the relaxin-GR pathway. Regul. Pept. 154, 77–84 (2009).

    CAS  PubMed  Google Scholar 

  53. Dschietzig, T., Bartsch, C., Baumann, G. & Stangl, K. Relaxin—a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharmacol. Therap. 112, 38–56 (2006).

    CAS  Google Scholar 

  54. Jeyabalan, A., Shroff, S. G., Novak, J. & Conrad, K. P. The vascular actions of relaxin. Adv. Exp. Med. Biol. 612, 65–87 (2007).

    PubMed  Google Scholar 

  55. Fisher, C. et al. Is the pregnancy hormone relaxin also a vasodilator peptide secreted by the heart? Circulation 106, 292–295 (2002).

    CAS  PubMed  Google Scholar 

  56. Debrah, D. O., Conrad, K. P., Jeyabalan, A., Danielson, L. A. & Shroff, S. G. Relaxin increases cardiac output and reduces systemic arterial load in hypertensive rats. Hypertension 46, 745–750 (2005).

    CAS  PubMed  Google Scholar 

  57. Tozzi, C. A. et al. Recombinant human relaxin reduces hypoxic pulmonary hypertension in the rat. Pulm. Pharmacol. Ther. 18, 346–353 (2005).

    CAS  PubMed  Google Scholar 

  58. St-Louis, J. & Massicotte, G. Chronic decrease of blood pressure by rat relaxin in spontaneously hypertensive rats. Life Sci. 37, 1351–1357 (1985).

    CAS  PubMed  Google Scholar 

  59. Conrad, K. P. Mechanisms of renal vasodilation and hyperfiltration during pregnancy. J. Soc. Gynecol. Investig. 11, 438–448 (2004).

    CAS  PubMed  Google Scholar 

  60. Jeyabalan, A. & Conrad, K. P. Renal function during normal pregnancy and preeclampsia. Front. Biosci. 12, 2425–2437 (2007).

    CAS  PubMed  Google Scholar 

  61. Debrah, D. O., Conrad, K. P., Danielson, L. A. & Shroff, S. G. Effects of relaxin on systemic arterial hemodynamics and mechanical properties in conscious rats: Sex dependency and dose response. J. Appl. Physiol. 98, 1013–1020 (2005).

    CAS  PubMed  Google Scholar 

  62. Dschietzig, T. et al. Intravenous recombinant human relaxin in compensated heart failure: a safety, tolerability, and pharmacodynamic trial. J. Card. Fail. 15, 182–190 (2009).

    CAS  PubMed  Google Scholar 

  63. Teerlink, J. R. et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet 373, 1429–1439 (2009).

    CAS  PubMed  Google Scholar 

  64. Unemori, E. N. et al. Relaxin induces vascular endothelial growth factor expression and angiogenesis selectively at wound sites. Wound Repair. Regen. 8, 361–370 (2000).

    CAS  PubMed  Google Scholar 

  65. Formigli, L. et al. Paracrine effects of transplanted myoblasts and relaxin on post-infarction heart remodelling. J. Cell. Mol. Med. 11, 1087–1100 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Coulson, C. C., Thorp, J. M., Jr, Mayer, D. C. & Cefalo, R. C. Central hemodynamic effects of recombinant human relaxin in the isolated, perfused rat heart model. Obstet. Gynecol. 87, 610–612 (1996).

    CAS  PubMed  Google Scholar 

  67. Toth, M., Taskinen, P. & Ruskoaho, H. Relaxin stimulates atrial natriuretic peptide secretion in perfused rat heart. J. Endocrinol. 150, 487–495 (1996).

    CAS  PubMed  Google Scholar 

  68. Kakouris, H., Eddie, L. W. & Summers, R. J. Cardiac effects of relaxin in rats. Lancet 339, 1076–1078 (1992).

    CAS  PubMed  Google Scholar 

  69. Ward, D. G., Thomas, G. R. & Cronin, M. J. Relaxin increases rat heart rate by a direct action on the cardiac atrium. Biochem. Biophys. Res. Commun. 186, 999–1005 (1992).

    CAS  PubMed  Google Scholar 

  70. Tan, Y. Y., Wade, J. D., Tregear, G. W. & Summers, R. J. Comparison of relaxin receptors in rat isolated atria and uterus by use of synthetic and native relaxin analogues. Br. J. Pharmacol. 123, 762–770 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan, Y. Y., Wade, J. D., Tregear, G. W. & Summers, R. J. Quantitative autoradiographic studies of relaxin binding in rat atria, uterus and cerebral cortex: characterization and effects of oestrogen treatment. Br. J. Pharmacol. 127, 91–98 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bathgate, R. A. D. et al. The Relaxin-Like Factor (Insulin 3) is highly expressed in the ruminant ovary: A putative ruminant relaxin? in Relaxin 2000: Proceedings of the Third International Conference on Relaxin and Related Peptides (eds. Tregear, G. W., Ivell, R., Bathgate, R. A. & Wade, J. D.) 349–356 (Kluwer, Dordrecht, 2001).

    Google Scholar 

  73. Samuel, C. S. et al. Relaxin modulates cardiac fibroblast proliferation, differentiation and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145, 4125–4133 (2004).

    CAS  PubMed  Google Scholar 

  74. Lekgabe, E. D. et al. Relaxin reverses cardiac and renal fibrosis in spontaneously hypertensive rats. Hypertension 46, 412–418 (2005).

    CAS  PubMed  Google Scholar 

  75. Samuel, C. S., Hewitson, T. D., Zhang, Y. & Kelly, D. J. Relaxin ameliorates fibrosis in experimental diabetic cardiomyopathy. Endocrinology 149, 3286–3293 (2008).

    CAS  PubMed  Google Scholar 

  76. Bathgate, R. A. et al. Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Mol. Cell. Endocrinol. 280, 30–38 (2008).

    CAS  PubMed  Google Scholar 

  77. Bonacchi, M. et al. Functional and histopathological improvement of the post-infarcted rat heart upon myoblast cell grafting and relaxin therapy. J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2008.00503.x

    PubMed  PubMed Central  Google Scholar 

  78. Du, X. J. et al. Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific phenotype. Cardiovasc. Res. 57, 395–404 (2003).

    CAS  PubMed  Google Scholar 

  79. Du, X. J. et al. Reversal of cardiac fibrosis and related dysfunction by relaxin. Ann. N. Y. Acad. Sci. 1160, 278–284 (2009).

    CAS  PubMed  Google Scholar 

  80. Laflamme, M. A. & Murry, C. E. Regenerating the heart. Nat. Biotechnol. 23, 845–856 (2005).

    CAS  PubMed  Google Scholar 

  81. Formigli, L. et al. Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favored by direct cell–cell contacts and relaxin treatment. Am. J. Physiol. Cell Physiol. 288, C795–C804 (2005).

    CAS  Google Scholar 

  82. Formigli, L. et al. Skeletal myoblasts overexpressing relaxin improve differentiation and communication of primary murine cardiomyocyte cell cultures. J. Mol. Cell. Cardiol. 47, 335–345 (2009).

    CAS  PubMed  Google Scholar 

  83. Dschietzig, T. et al. The pregnancy hormone relaxin is a player in human heart failure. FASEB J. 15, 2187–2195 (2001).

    CAS  PubMed  Google Scholar 

  84. Xu, Q. et al. Endogenous relaxin does not affect chronic pressure overload-induced cardiac hypertrophy and fibrosis. Endocrinology 149, 476–482 (2008).

    CAS  PubMed  Google Scholar 

  85. Fisher, C., Berry, C., Blue, L., Morton, J. J. & McMurray, J. N-terminal pro B type natriuretic peptide, but not the new putative cardiac hormone relaxin, predicts prognosis in patients with chronic heart failure. Heart 89, 879–881 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hocher, B. et al. Relaxin is an independent risk factor predicting death in male patients with end-stage kidney disease. Circulation 109, 2266–2268 (2004).

    CAS  PubMed  Google Scholar 

  87. Kupari, M., Mikkola, T. S., Turto, H. & Lommi, J. Is the pregnancy hormone relaxin an important player in human heart failure? Eur. J. Heart Fail. 7, 195–198 (2005).

    CAS  PubMed  Google Scholar 

  88. Gedikli, O. et al. Circulating levels of relaxin and its relation to cardiovascular function in patients with hypertension. Blood Press. 18, 68–73 (2009).

    CAS  PubMed  Google Scholar 

  89. Giordano, N. et al. Serum relaxin in systemic sclerosis. J. Rheumatol. 32, 2164–2166 (2005).

    CAS  PubMed  Google Scholar 

  90. Stewart, D. R. et al. The relationship between hCG and relaxin secretion in normal pregnancies vs peri-implantation spontaneous abortions. Clin. Endocrinol. 38, 379–385 (1993).

    CAS  Google Scholar 

  91. Cossum, P. A. et al. The disposition of a human relaxin (hRlx-2) in pregnant and nonpregnant rats. Pharm. Res. 9, 419–424 (1992).

    CAS  PubMed  Google Scholar 

  92. Smith, M. C. et al. Influence of recombinant human relaxin on renal hemodynamics in healthy volunteers. J. Am. Soc. Nephrol. 17, 3192–3197 (2006).

    CAS  Google Scholar 

  93. Teichman, S. L. et al. Relaxin, a pleiotropic vasodilator for the treatment of heart failure. Heart Fail. Rev. doi: 10.1007/s10741-008-9129-3

    PubMed  PubMed Central  Google Scholar 

  94. Iles, L. et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J. Am. Coll. Cardiol. 52, 1574–1580 (2008).

    PubMed  Google Scholar 

  95. Miragoli, M., Salvarani, N. & Rohr, S. Myofibroblasts induce ectopic activity in cardiac tissue. Circ. Res. 101, 755–758 (2007).

    CAS  PubMed  Google Scholar 

  96. Burstein, B. & Nattel, S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 51, 802–809 (2008).

    CAS  PubMed  Google Scholar 

  97. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    CAS  PubMed  Google Scholar 

  98. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    CAS  PubMed  Google Scholar 

  99. Ouvrard-Pascaud, A. et al. Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias. Circulation 111, 3025–3033 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tabanelli, S., Tang, B. & Gurpide, E. In vitro decidualization of human endometrial stromal cells. J. Steroid Biochem. Mol. Biol. 42, 337–344 (1992).

    CAS  PubMed  Google Scholar 

  101. Halls, M. L. et al. Relaxin activates multiple cAMP signaling pathway profiles in different target cells. Ann. N. Y. Acad. Sci. 1160, 108–111 (2009).

    CAS  PubMed  Google Scholar 

  102. Quattrone, S., Chiappini, L., Scapagnini, G., Bigazzi, B. & Bani, D. Relaxin potentiates the expression of inducible nitric oxide synthase by endothelial cells from human umbilical vein in in vitro culture. Mol. Hum. Reprod. 10, 325–330 (2004).

    CAS  PubMed  Google Scholar 

  103. Bani, D. et al. Relaxin activates the L-arginine-nitric oxide pathway in vascular smooth muscle cells in culture. Hypertension 31, 1240–1247 (1998).

    CAS  PubMed  Google Scholar 

  104. Debrah, D. O. et al. Relaxin is essential for systemic vasodilation and increased global arterial compliance during early pregnancy in conscious rats. Endocrinology 147, 5126–5131 (2006).

    CAS  PubMed  Google Scholar 

  105. Erikson, M. S. & Unemori, E. N. Relaxin clinical trials in systemic sclerosis. in Relaxin 2000: Proceedings of the Third International Conference on Relaxin and Related Peptides (eds Tregear, G. W., Ivell, R., Bathgate, R. A. & Wade, J. D.) 373–382 (Kluwer, Amsterdam, 2001).

    Google Scholar 

  106. Smith, M. C., Danielson, L. A., Conrad, K. P. & Davison, J. M. Influence of recombinant human relaxin on renal hemodynamics in healthy volunteers. J. Am. Soc. Nephrol. 17, 3192–3197 (2006).

    CAS  PubMed  Google Scholar 

  107. Halls, M. L., van der Westhuizen, E. T., Bathgate, R. A. & Summers, R. J. Relaxin family peptide receptors—former orphans reunite with their parent ligands to activate multiple signalling pathways. Br. J. Pharmacol. 150, 677–691 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Danielson, L. A. & Conrad, K. P. Time course and dose response of relaxin-mediated renal vasodilation, hyperfiltration, and changes in plasma osmolality in conscious rats. J. Appl. Physiol. 95, 1509–1514 (2003).

    CAS  PubMed  Google Scholar 

  109. Unemori, E. N. & Amento, E. P. Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. J. Biol. Chem. 265, 10681–10685 (1990).

    CAS  PubMed  Google Scholar 

  110. Callander, G. E., Thomas, W. G. & Bathgate, R. A. Prolonged RXFP1 and RXFP2 signaling can be explained by poor internalization and a lack of β-arrestin recruitment. Am. J. Physiol. Cell. Physiol. 296, C1058–C1066 (2009).

    CAS  PubMed  Google Scholar 

  111. De Meyts, P. et al. Structural basis of allosteric ligand-receptor interactions in the insulin/relaxin peptide family: implications for other receptor tyrosine kinases and G-protein-coupled receptors. Ann. N. Y. Acad. Sci. 1160, 45–53 (2009).

    CAS  PubMed  Google Scholar 

  112. Svendsen, A. M. et al. Dimerization and negative cooperativity in the relaxin family peptide receptors. Ann. N. Y. Acad. Sci. 1160, 54–59 (2009).

    CAS  PubMed  Google Scholar 

  113. Svendsen, A. M. et al. Negative cooperativity in H2 relaxin binding to a dimeric relaxin family peptide receptor 1. Mol. Cell. Endocrinol. 296, 10–17 (2008).

    CAS  PubMed  Google Scholar 

  114. Osheroff, P. L., Cronin, M. J. & Lofgren, J. A. Relaxin binding in the rat heart atrium. Proc. Natl Acad. Sci. USA 89, 2384–2388 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Dschietzig, T., Bartsch, C., Stangl, V., Baumann, G. & Stangl, K. Myocardial relaxin counteracts hypertrophy in hypertensive rats. Ann. N. Y. Acad. Sci. 1041, 441–443 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Health and Medical Research Council (NHMRC) of Australia Research Fellowships to X.-J. Du, A. M. Dart and R. A. D. Bathgate; a National Heart Foundation of Australia (NHFA)/NHMRC RD Wright Fellowship to C. S. Samuel; a NHMRC project grant 436,713 to R. J. Summers and R. A. D. Bathgate; a NHMRC program grant 519,461 to P. M. Sexton, A. Christopoulos and R. J. Summers; and a NHMRC program grant A72600 to A. M. Dart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Du.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, XJ., Bathgate, R., Samuel, C. et al. Cardiovascular effects of relaxin: from basic science to clinical therapy. Nat Rev Cardiol 7, 48–58 (2010). https://doi.org/10.1038/nrcardio.2009.198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing