Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unmyelinated tactile afferents signal touch and project to insular cortex

Abstract

There is dual tactile innervation of the human hairy skin: in addition to fast-conducting myelinated afferent fibers, there is a system of slow-conducting unmyelinated (C) afferents that respond to light touch. In a unique patient lacking large myelinated afferents, we found that activation of C tactile (CT) afferents produced a faint sensation of pleasant touch. Functional magnetic resonance imaging (fMRI) analysis during CT stimulation showed activation of the insular region, but not of somatosensory areas S1 and S2. These findings identify CT as a system for limbic touch that may underlie emotional, hormonal and affiliative responses to caress-like, skin-to-skin contact between individuals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Psychophysical testing.
Figure 2: Cortical activations evoked by brush stroking on the right forearm of the patient G.L. and two normal subjects.
Figure 3: Activations in the insular region evoked by brush stroking on the right forearm of the patient G.L.
Figure 4: Cortical activations evoked by brush stroking on the right forearm and the palm of the right hand.

Similar content being viewed by others

References

  1. Kandel, E.R., Schwartz, J.H. & Jessell, T.M. Principles of Neural Science (McGraw-Hill, Health Professions Division, New York, 2000).

    Google Scholar 

  2. Zotterman, Y. Touch, pain and tickling: an electrophysiological investigation on cutaneous sensory nerves. J. Physiol. (Lond.) 95, 1–28 (1939).

    Article  CAS  Google Scholar 

  3. Vallbo, Å., Olausson, H., Wessberg, J. & Norrsell, U. A system of unmyelinated afferents for innocuous mechanoreception in the human skin. Brain Res. 628, 301–304 (1993).

    Article  CAS  Google Scholar 

  4. Nordin, M. Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J. Physiol. (Lond.) 426, 229–240 (1990).

    Article  CAS  Google Scholar 

  5. Vallbo, Å.B., Olausson, H. & Wessberg, J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J. Neurophysiol. 81, 2753–2763 (1999).

    Article  CAS  Google Scholar 

  6. Edin, B. Cutaneous afferents provide information about knee joint movements in humans. J. Physiol. (Lond.) 531, 289–297 (2001).

    Article  CAS  Google Scholar 

  7. Douglas, W.W. & Ritchie, J.M. Non-medullated fibres in the saphenous nerve which signal touch. J. Physiol. (Lond.) 139, 385–399 (1957).

    Article  CAS  Google Scholar 

  8. Kumazawa, T. & Perl, E.R. Primate cutaneous sensory units with unmyelinated (C) afferent fibers. J. Neurophysiol. 40, 1325–1338 (1977).

    Article  CAS  Google Scholar 

  9. Georgopoulos, A.P. Functional properties of primary afferent units probably related to pain mechanisms in primate glabrous skin. J Neurophysiol. 39, 71–83 (1976).

    Article  CAS  Google Scholar 

  10. Bessou, P., Burgess, P.R., Perl, E.R. & Taylor, C.B. Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. J. Neurophysiol. 34, 116–131 (1971).

    Article  CAS  Google Scholar 

  11. Johansson, R.S. & Vallbo, Å.B. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. (Lond.) 286, 283–300 (1979).

    Article  CAS  Google Scholar 

  12. Kakuda, N. Conduction velocity of low-threshold mechanoreceptive afferent fibers in the glabrous and hairy skin of human hands measured with microneurography and spike-triggered averaging. Neurosci. Res. 15, 179–188 (1992).

    Article  CAS  Google Scholar 

  13. Iggo, A. Cutaneous mechanoreceptors with afferent C fibres. J. Physiol. (Lond.) 152, 337–353 (1960).

    Article  CAS  Google Scholar 

  14. Kumazawa, T. & Perl, E.R. Primate cutaneous receptors with unmyelinated (C) fibres and their projection to the substantia gelatinosa. J. Physiol. (Paris) 73, 287–304 (1977).

    CAS  Google Scholar 

  15. Light, A.R., Trevino, D.L. & Perl, E.R. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J. Comp. Neurol. 186, 151–171 (1979).

    Article  CAS  Google Scholar 

  16. Sugiura, Y., Lee, C.L. & Perl, E.R. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 234, 358–361 (1986).

    Article  CAS  Google Scholar 

  17. Light, A.R. & Willcockson, H.H. Spinal laminae I–II neurons in rat recorded in vivo in whole cell, tight seal configuration: properties and opioid responses. J. Neurophysiol. 82, 3316–3326 (1999).

    Article  CAS  Google Scholar 

  18. MacKenzie, R.A., Burke, D., Skuse, N.F. & Lethlean, A.K. Fibre function and perception during cutaneous nerve block. J. Neurol. Neurosurg. Psychiatry 38, 865–873 (1975).

    Article  CAS  Google Scholar 

  19. Essick, G.K., James, A. & McGlone, F.P. Psychophysical assessment of the affective components of non-painful touch. Neuroreport 10, 2083–2087 (1999).

    Article  CAS  Google Scholar 

  20. Forget, R. & Lamarre, Y. Postural adjustments associated with different unloadings of the forearm: effects of proprioceptive and cutaneous afferent deprivation. Can. J. Physiol. Pharmacol. 73, 285–294 (1995).

    Article  CAS  Google Scholar 

  21. Olausson, H., Norrsell, U., Göthner, K. & Wallin, B.G. Directional sensibility for quantification of tactile dysfunction. Muscle Nerve 20, 1414–1421 (1997).

    Article  CAS  Google Scholar 

  22. Robinson, C.J. & Burton, H. Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J. Comp. Neurol. 192, 69–92 (1980).

    Article  CAS  Google Scholar 

  23. Augustine, J.R. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res. Rev. 22, 229–244 (1996).

    Article  CAS  Google Scholar 

  24. Järvilehto, T., Hämäläinen, H. & Laurinen, P. Characteristics of single mechanoreceptive fibres innervating hairy skin of the human hand. Exp. Brain Res. 25, 45–61 (1976).

    Article  Google Scholar 

  25. Konietzny, F. & Hensel, H. Response of rapidly and slowly adapting mechanoreceptors and vibratory sensitivity in human hairy skin. Pflügers Arch. 368, 39–44 (1977).

    Article  CAS  Google Scholar 

  26. Burgess, P.R., Petit, D. & Warren, R.M. Receptor types in cat hairy skin supplied by myelinated fibers. J. Neurophysiol. 31, 833–848 (1968).

    Article  CAS  Google Scholar 

  27. Perl, E.R. Myelinated afferent fibres innervating the primate skin and their response to noxious stimuli. J. Physiol. (Lond.) 197, 593–615 (1968).

    Article  CAS  Google Scholar 

  28. Vallbo, Å.B., Olausson, H., Wessberg, J. & Kakuda, N. Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects. J. Physiol. (Lond.) 483, 783–795 (1995).

    Article  CAS  Google Scholar 

  29. Uvnäs-Moberg, K. Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 23, 819–835 (1998).

    Article  Google Scholar 

  30. Harlow, H.F. The nature of love. Am. Psychol. 13, 673–685 (1958).

    Article  Google Scholar 

  31. Friedman, D.P., Murray, E.A., O'Neill, J.B. & Mishkin, M. Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J. Comp. Neurol. 252, 323–347 (1986).

    Article  CAS  Google Scholar 

  32. Disbrow, E., Buonocore, M., Antognini, J., Carstens, E. & Rowley, H.A. Somatosensory cortex: a comparison of the response to noxious thermal, mechanical, and electrical stimuli using functional magnetic resonance imaging. Hum. Brain Mapp. 6, 150–159 (1998).

    Article  CAS  Google Scholar 

  33. Coghill, R.C. et al. Distributed processing of pain and vibration by the human brain. J. Neurosci. 14, 4095–4108 (1994).

    Article  CAS  Google Scholar 

  34. Brooks, J.C., Nurmikko, T.J., Bimson, W.E., Singh, K.D. & Roberts, N. fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 15, 293–301 (2002).

    Article  Google Scholar 

  35. Drzezga, A. et al. Central activation by histamine-induced itch: analogies to pain processing: a correlational analysis of O-15 H2O positron emission tomography studies. Pain 92, 295–305 (2001).

    Article  CAS  Google Scholar 

  36. Craig, A.D., Chen, K., Bandy, D. & Reiman, E.M. Thermosensory activation of insular cortex. Nat. Neurosci. 3, 184–190 (2000).

    Article  CAS  Google Scholar 

  37. Bartels, A. & Zeki, S. The neural basis of romantic love. Neuroreport 11, 3829–3834 (2000).

    Article  CAS  Google Scholar 

  38. Stoleru, S. et al. Neuroanatomical correlates of visually evoked sexual arousal in human males. Arch. Sex. Behav. 28, 1–21 (1999).

    Article  CAS  Google Scholar 

  39. Craig, A.D. in Progress in Brain Research (eds. Holstege, G., Bandler, R. & Saper, C. B.) 225–242 (Elsevier Science BV, Ireland, 1996).

    Google Scholar 

  40. Craig, A.D. & Andrew, D. Responses of spinothalamic lamina I neurons to repeated brief contact heat stimulation in the cat. J. Neurophysiol. 87, 1902–1914 (2002).

    Article  CAS  Google Scholar 

  41. White, J.C. & Sweet, W.H. Pain and the Neurosurgeon: a Forty-year Experience (C. C. Thomas, Springfield, Illinois, 1969).

    Google Scholar 

  42. Craig, A.D. Spinal location of ascending lamina I axons in the Macaque monkey. J. Pain 1, 33–45 (2000).

    Article  Google Scholar 

  43. Damasio, A.R. The Feeling of What Happens: Body and Emotion in the Making of Consciousness (Harcourt Brace, New York, 1999).

    Google Scholar 

  44. Melzack, R. & Wall, P.D. Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    Article  CAS  Google Scholar 

  45. Yarnitsky, D., Sprecher, E., Zaslansky, R. & Hemli, J.A. Heat pain thresholds: normative data and repeatability. Pain 60, 329–332 (1995).

    Article  CAS  Google Scholar 

  46. Worsley, K.J. et al. A general statistical analysis for fMRI data. Neuroimage 15, 1–15 (2002).

    Article  CAS  Google Scholar 

  47. Olausson, H. et al. Cortical activation by tactile and painful stimuli in hemispherectomized patients. Brain 124, 916–927 (2001).

    Article  CAS  Google Scholar 

  48. Collins, D.L., Neelin, P., Peters, T.M. & Evans, A.C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18, 192–205 (1994).

    Article  CAS  Google Scholar 

  49. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (G. Thieme, Stuttgart, 1988).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Canadian and Swedish Medical Research Councils (grants 3546, 12170 and 3548), and the Ingabritt and Arne Lundberg Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Olausson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olausson, H., Lamarre, Y., Backlund, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5, 900–904 (2002). https://doi.org/10.1038/nn896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing