Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neighborhood matters: divergent patterns of stress-induced plasticity across the brain

Abstract

The fact that exposure to severe stress leads to the development of psychiatric disorders serves as the basic rationale for animal models of stress disorders. Clinical and neuroimaging studies have shown that three brain areas involved in learning and memory—the hippocampus, amygdala and prefrontal cortex—undergo distinct structural and functional changes in individuals with stress disorders. These findings from patient studies pose several challenges for animal models of stress disorders. For instance, why does stress impair cognitive function, yet enhance fear and anxiety? Can the same stressful experience elicit contrasting patterns of plasticity in the hippocampus, amygdala and prefrontal cortex? How does even a brief exposure to traumatic stress lead to long-lasting behavioral abnormalities? Thus, animal models of stress disorders must not only capture the unique spatio-temporal features of structural and functional alterations in these brain areas, but must also provide insights into the underlying neuronal plasticity mechanisms. This Review will address some of these key questions by describing findings from animal models on how stress-induced plasticity varies across different brain regions and thereby gives rise to the debilitating emotional and cognitive symptoms of stress-related psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain areas implicated in stress-related psychiatric disorders.

Debbie Maizels/Nature Publishing Group

Figure 2: Commonly used rodent models of stress.

Debbie Maizels/Nature Publishing Group

Figure 3: Behavioral stress triggers distinct spatiotemporal patterns of plasticity at multiple levels of neural organization.

Debbie Maizels/Nature Publishing Group

Figure 4: Stress enhances fear by forming new synapses with greater capacity for LTP in the lateral amygdala.

Debbie Maizels/Nature Publishing Group

Figure 5: Temporal features of stress-induced plasticity in the amygdala and hippocampus.

Debbie Maizels/Nature Publishing Group

Figure 6: Interactions and interdependence of stress-induced plasticity between brain areas.

Debbie Maizels/Nature Publishing Group

Similar content being viewed by others

References

  1. Bremner, J.D. et al. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol. Psychiatry 41, 23–32 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liberzon, I. et al. Brain activation in PTSD in response to trauma-related stimuli. Biol. Psychiatry 45, 817–826 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Rauch, S.L. et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol. Psychiatry 47, 769–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Shin, L.M. et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch. Gen. Psychiatry 62, 273–281 (2005).

    Article  PubMed  Google Scholar 

  5. Hamilton, J.P., Siemer, M. & Gotlib, I.H. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Mol. Psychiatry 13, 993–1000 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lorenzetti, V., Allen, N.B., Fornito, A. & Yücel, M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J. Affect. Disord. 117, 1–17 (2009).

    Article  PubMed  Google Scholar 

  7. Ulrich-Lai, Y.M. & Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Popoli, M., Yan, Z., McEwen, B.S. & Sanacora, G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13, 22–37 (2012).

    Article  CAS  Google Scholar 

  9. Roozendaal, B., McEwen, B.S. & Chattarji, S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 10, 423–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. McEwen, B.S. & Morrison, J.H. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79, 16–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bremner, J.D. et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry 152, 973–981 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gilbertson, M.W. et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 5, 1242–1247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Armony, J.L., Corbo, V., Clément, M.-H. & Brunet, A. Amygdala response in patients with acute PTSD to masked and unmasked emotional facial expressions. Am. J. Psychiatry 162, 1961–1963 (2005).

    Article  PubMed  Google Scholar 

  14. Shin, L.M., Rauch, S.L. & Pitman, R.K. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann. NY Acad. Sci. 1071, 67–79 (2006).

    Article  PubMed  Google Scholar 

  15. Woodward, S.H. et al. Decreased anterior cingulate volume in combat-related PTSD. Biol. Psychiatry 59, 582–587 (2006).

    Article  PubMed  Google Scholar 

  16. Britton, J.C., Phan, K.L., Taylor, S.F., Fig, L.M. & Liberzon, I. Corticolimbic blood flow in posttraumatic stress disorder during script-driven imagery. Biol. Psychiatry 57, 832–840 (2005).

    Article  PubMed  Google Scholar 

  17. Jose, M. et al. Hippocampal and anterior cingulate activation deficits in patients with geriatric depression. Am. J. Psychiatry 158, 1321–1323 (2001).

    Article  Google Scholar 

  18. Roberson-Nay, R. et al. Increased amygdala activity during successful memory encoding in adolescent major depressive disorder: An FMRI study. Biol. Psychiatry 60, 966–973 (2006).

    Article  PubMed  Google Scholar 

  19. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Publishing, 2013).

  20. O'Keefe, J. & Nadel, L. Precis of O'Keefe & Nadel's The hippocampus as a cognitive map. Behav. Brain Sci. 2, 487–494 (1979).

    Article  Google Scholar 

  21. Squire, L.R. & Zola-Morgan, S. The medial temporal lobe memory system. Science 253, 1380–1386 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. McEwen, B.S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Martin, S.J., Grimwood, P. & Morris, R. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Jacobson, L. & Sapolsky, R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev. 12, 118–134 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Herman, J.P. & Cullinan, W.E. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20, 78–84 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe, Y., Gould, E. & McEwen, B.S. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 588, 341–345 (1992). An influential study that analyzed how repeated restraint stress leads to dendritic atrophy in Golgi-stained hippocampal CA3 pyramidal neurons.

    Article  CAS  PubMed  Google Scholar 

  27. Magariños, A.M. & McEwen, B.S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: Comparison of stressors. Neuroscience 69, 83–88 (1995).

    Article  PubMed  Google Scholar 

  28. Sousa, N., Lukoyanov, N., Madeira, M., Almeida, O. & Paula-Barbosa, M. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97, 253–266 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Conrad, C.D., LeDoux, J.E., Magariños, A.M. & McEwen, B.S. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci. 113, 902–913 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Magariños, A.M. & McEwen, B.S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: Involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 89–98 (1995).

    Article  PubMed  Google Scholar 

  31. McEwen, B.S. et al. Mechanisms of stress in the brain. Nat. Neurosci. 18, 1353–1363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pawlak, R. et al. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc. Natl. Acad. Sci. USA 102, 18201–18206 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, Y., Dubé, C.M., Rice, C.J. & Baram, T.Z. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J. Neurosci. 28, 2903–2911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, Y. et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc. Natl. Acad. Sci. USA 107, 13123–13128 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Starkman, M.N., Gebarski, S.S., Berent, S. & Schteingart, D.E. Hippocampal formation volume, memory dysfunction and cortisol levels in patients with Cushing's syndrome. Biol. Psychiatry 32, 756–765 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Sheline, Y.I., Wang, P.W., Gado, M.H., Csernansky, J.G. & Vannier, M.W. Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. USA 93, 3908–3913 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Starkman, M.N. et al. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's disease. Biol. Psychiatry 46, 1595–1602 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, J.J. & Diamond, D.M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Diamond, D.M. & Rose, G.M. Stress impairs LTP and hippocampal-dependent memory. Ann. NY Acad. Sci. 746, 411–414 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Diamond, D.M., Bennett, M.C., Fleshner, M. & Rose, G.M. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2, 421–430 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Kole, M.H., Costoli, T., Koolhaas, J. & Fuchs, E. Bidirectional shift in the cornu ammonis 3 pyramidal dendritic organization following brief stress. Neuroscience 125, 337–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, L., Anwyl, R. & Rowan, M.J. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387, 497–500 (1997). The first in vivo recording study in awake rats to show that the induction of LTD in the CA1 area is facilitated, rather than inhibited, by exposure to mild naturalistic stress.

    Article  CAS  PubMed  Google Scholar 

  43. Xu, L., Holscher, C., Anwyl, R. & Rowan, M.J. Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. Proc. Natl. Acad. Sci. USA 95, 3204–3208 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cerqueira, J.J., Mailliet, F., Almeida, O.F., Jay, T.M. & Sousa, N. The prefrontal cortex as a key target of the maladaptive response to stress. J. Neurosci. 27, 2781–2787 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cook, S.C. & Wellman, C.L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J. Neurobiol. 60, 236–248 (2004). Another important study that reported stress-induced dendritic atrophy in the mPFC of rodents.

    Article  PubMed  Google Scholar 

  46. Radley, J.J. et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125, 1–6 (2004). The first study showing that repeated restraint stress elicits significant reduction in the total length and branch numbers of apical dendrites of pyramidal neurons in layer II/III of the anterior cingulate and prelimbic cortices. This study demonstrated similarities between stress-induced structural plasticity in the hippocampus and PFC.

    Article  CAS  PubMed  Google Scholar 

  47. Radley, J.J. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb. Cortex 16, 313–320 (2006).

    Article  PubMed  Google Scholar 

  48. Liston, C. et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wellman, C.L. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J. Neurobiol. 49, 245–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Arnsten, A.F.T. Stress weakens prefrontal cortex network connections: molecular events affecting cognitive disorders. Nat. Neurosci. 18, 1376–1385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goldwater, D.S. et al. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 164, 798–808 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Zhong, P., Liu, W., Gu, Z. & Yan, Z. Serotonin facilitates long-term depression induction in prefrontal cortex via p38 MAPK/Rab5-mediated enhancement of AMPA receptor internalization. J. Physiol. (Lond.) 586, 4465–4479 (2008).

    Article  CAS  Google Scholar 

  53. Holderbach, R., Clark, K., Moreau, J.-L., Bischofberger, J. & Normann, C. Enhanced long-term synaptic depression in an animal model of depression. Biol. Psychiatry 62, 92–100 (2007).

    Article  PubMed  Google Scholar 

  54. Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. LeDoux, J.E. Emotion, memory and the brain. Sci. Am. 270, 50–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Pitkänen, A. & Amaral, D. The distribution of GABAergic cells, fibers, and terminals in the monkey amygdaloid complex: an immunohistochemical and in situ hybridization study. J. Neurosci. 14, 2200–2224 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Herman, J.P., Tasker, J.G., Ziegler, D.R. & Cullinan, W.E. Local circuit regulation of paraventricular nucleus stress integration: glutamate–GABA connections. Pharmacol. Biochem. Behav. 71, 457–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Mandell, A.J., Chapman, L.F., Rand, R.W. & Walter, R.D. Plasma corticosteroids: changes in concentration after stimulation of hippocampus and amygdala. Science 139, 1212 (1963).

    Article  CAS  PubMed  Google Scholar 

  59. Rubin, R.T., Mandell, A.J. & Crandall, P.H. Corticosteroid responses to limbic stimulation in man: localization of stimulus sites. Science 153, 767–768 (1966).

    Article  CAS  PubMed  Google Scholar 

  60. Conrad, C.D., LeDoux, J.E., Magariños, A.M. & McEwen, B.S. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci. 113, 902–913 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Vyas, A., Pillai, A.G. & Chattarji, S. Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128, 667–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Vyas, A. & Chattarji, S. Modulation of different states of anxiety-like behavior by chronic stress. Behav. Neurosci. 118, 1450–1454 (2004).

    Article  PubMed  Google Scholar 

  63. McGaugh, J.L. & Roozendaal, B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr. Opin. Neurobiol. 12, 205–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Luine, V., Villegas, M., Martinez, C. & McEwen, B.S. Repeated stress causes reversible impairments of spatial memory performance. Brain Res. 639, 167–170 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Conrad, C.D., Galea, L.A., Kuroda, Y. & McEwen, B.S. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav. Neurosci. 110, 1321–1334 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Liang, K.C., Hon, W. & Davis, M. Pre-and posttraining infusion of N-methyl-D-aspartate receptor antagonists into the amygdala impair memory in an inhibitory avoidance task. Behav. Neurosci. 108, 241 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Shors, T.J. & Mathew, P.R. NMDA receptor antagonism in the lateral/basolateral but not central nucleus of the amygdala prevents the induction of facilitated learning in response to stress. Learn. Mem. 5, 220–230 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vyas, A., Mitra, R., Shankaranarayana Rao, B.S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002). This was the first report to reveal that, unlike in the hippocampus, chronic immobilization stress leads to dendritic growth in principal neurons of the BLA. Furthermore, this study showed that only those chronic stress paradigms that lead to enhanced anxiety-like behavior cause this dendritic hypertrophy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McDonald, A.J. Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J. Comp. Neurol. 212, 293–312 (1982).

    Article  CAS  PubMed  Google Scholar 

  70. McDonald, A.J. Projection neurons of the basolateral amygdala: a correlative Golgi and retrograde tract tracing study. Brain Res. Bull. 28, 179–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. McDonald, A. Cell types and intrinsic connections of the amygdala. in The Amygdala: Neurobiological Aspects of Emotion, Memory and Mental Dysfunction (ed. Aggleton, J.P.) 67–96 (1992).

    Google Scholar 

  72. Mitra, R., Jadhav, S., McEwen, B.S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA 102, 9371–9376 (2005). This paper demonstrated for the first time how a single and repeated exposure to the same stressor differentially modifies the structural basis of synaptic connectivity in the BLA. Specifically, it showed that even an acute episode of stress can elicit a delayed increase in anxiety that is paralleled by a gradual increase in spine density in the BLA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mitra, R. & Sapolsky, R.M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. USA 105, 5573–5578 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yehuda, R., McFarlane, A. & Shalev, A. Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biol. Psychiatry 44, 1305–1313 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Schelling, G. et al. Stress doses of hydrocortisone, traumatic memories, and symptoms of posttraumatic stress disorder in patients after cardiac surgery: a randomized study. Biol. Psychiatry 55, 627–633 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Schelling, G. et al. Efficacy of hydrocortisone in preventing posttraumatic stress disorder following critical illness and major surgery. Ann. NY Acad. Sci. 1071, 46–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Resnick, H.S., Yehuda, R., Pitman, R.K. & Foy, D.W. Effect of previous trauma on acute plasma cortisol level following rape. Am. J. Psychiatry 152, 1675 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Zohar, J. et al. High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: Interplay between clinical and animal studies. Eur. Neuropsychopharmacol. 21, 796–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Rao, R.P., Anilkumar, S., McEwen, B.S. & Chattarji, S. Glucocorticoids protect against the delayed behavioral and cellular effects of acute stress on the amygdala. Biol. Psychiatry 72, 466–475 (2012). This study reports that the presence of elevated levels of corticosterone at the time of acute stress confers protection against the delayed enhancing effect of stress on BLA synaptic connectivity and anxiety-like behavior. These observations are consistent with clinical reports on the protective effects of glucocorticoids against the development of posttraumatic symptoms triggered by traumatic stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cohen, H., Matar, M.A., Buskila, D., Kaplan, Z. & Zohar, J. Early post-stressor intervention with high-dose corticosterone attenuates posttraumatic stress response in an animal model of posttraumatic stress disorder. Biol. Psychiatry 64, 708–717 (2008). An important study reporting an animal model wherein the development of PTSD-like symptoms was blocked by the administration of glucocorticoids shortly after exposure to psychogenic stress.

    Article  CAS  PubMed  Google Scholar 

  81. Karst, H., Berger, S., Erdmann, G., Schütz, G. & Joëls, M. Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc. Natl. Acad. Sci. USA 107, 14449–14454 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nibuya, M., Morinobu, S. & Duman, R.S. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith, M.A., Makino, S., Kvetnansky, R. & Post, R.M. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15, 1768–1777 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, B., Dowlatshahi, D., MacQueen, G.M., Wang, J.-F. & Young, L.T. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Duman, R.S. & Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Nestler, E.J. et al. Neurobiology of depression. Neuron 34, 13–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Shirayama, Y., Chen, A.C.-H., Nakagawa, S., Russell, D.S. & Duman, R.S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Siuciak, J.A., Lewis, D.R., Wiegand, S.J. & Lindsay, R.M. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 56, 131–137 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Govindarajan, A. et al. Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proc. Natl. Acad. Sci. USA 103, 13208–13213 (2006). This study reported that morphological changes in the amygdala and hippocampus, caused by genetic overexpression in mice of the same molecule BDNF, give rise to contrasting effects on anxiety and depressive symptoms, both of which are major behavioral correlates of stress disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lakshminarasimhan, H. & Chattarji, S. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS ONE 7, e30481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McAllister, A.K., Lo, D.C. & Katz, L.C. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15, 791–803 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Davis, M. & Shi, C. The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety? Ann. NY Acad. Sci. 877, 281–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Vyas, A., Bernal, S. & Chattarji, S. Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res. 965, 290–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Hong, W., Kim, D.-W. & Anderson, D.J. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158, 1348–1361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pawlak, R., Magarinos, A.M., Melchor, J., McEwen, B. & Strickland, S. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat. Neurosci. 6, 168–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Bennur, S. et al. Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144, 8–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Suvrathan, A. et al. Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala. Philos. Trans. R. Soc. B Biol. Sci. 369, 151–159 (2014). Using whole-cell recordings in amygdala slices, this study identified specific changes in excitatory and inhibitory synaptic transmission that underlie stress-induced enhancement in LTP in the LA and fear learning.

    Article  CAS  Google Scholar 

  98. Sandi, C. & Pinelo-Nava, M.T. Stress and memory: behavioral effects and neurobiological mechanisms. Neural Plast. 2007, 78970 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Conrad, C.D., Galea, L.A., Kuroda, Y. & McEwen, B.S. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav. Neurosci. 110, 1321–1334 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Bauer, E.P., Schafe, G.E. & LeDoux, J.E. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cordero, M.I., Venero, C., Kruyt, N.D. & Sandi, C. Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Horm. Behav. 44, 338–345 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Rau, V., DeCola, J.P. & Fanselow, M.S. Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci. Biobehav. Rev. 29, 1207–1223 (2005).

    Article  PubMed  Google Scholar 

  103. Rodrigues, S.M., LeDoux, J.E. & Sapolsky, R.M. The influence of stress hormones on fear circuitry. Annu. Rev. Neurosci. 32, 289–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Shors, T.J., Weiss, C. & Thompson, R.F. Stress-induced facilitation of classical conditioning. Science 257, 537–539 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Stewart, M.G. et al. Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 131, 43–54 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Padival, M., Quinette, D. & Rosenkranz, J.A. Effects of repeated stress on excitatory drive of Basal amygdala neurons in vivo. Neuropsychopharmacoly 38, 1748–1762 (2013).

    Article  Google Scholar 

  107. Rodríguez Manzanares, P.A., Isoardi, N.A., Carrer, H.F. & Molina, V.A. Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J. Neurosci. 25, 8725–8734 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Vouimba, R.-M., Yaniv, D., Diamond, D. & Richter-Levin, G. Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats. Eur. J. Neurosci. 19, 1887–1894 (2004).

    Article  PubMed  Google Scholar 

  109. Vouimba, R.-M., Muñoz, C. & Diamond, D.M. Differential effects of predator stress and the antidepressant tianeptine on physiological plasticity in the hippocampus and basolateral amygdala. Stress 9, 29–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. File, S.E. in The Amygdala: a Functional Analysis (ed. Aggleton, J.P.) 195–212 (Oxford University Press, Oxford, 2000).

    Google Scholar 

  111. Adamec, R.E., Burton, P., Shallow, T. & Budgell, J. NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure–implications for anxiety associated with posttraumatic stress disorder. Physiol. Behav. 65, 723–737 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. De Kloet, C.S. et al. Assessment of HPA-axis function in posttraumatic stress disorder: pharmacological and non-pharmacological challenge tests, a review. J. Psychiatr. Res. 40, 550–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Bardeleben, U. & Holsboer, F. Cortisol response to a combined dexamethasone-human corticotrophin-releasing hormone challenge in patients with depression. J. Neuroendocrinol. 1, 485–488 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Pitkänen, A., Savander, V. & LeDoux, J.E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997).

    Article  PubMed  Google Scholar 

  115. Pikkarainen, M., Rönkkö, S., Savander, V., Insausti, R. & Pitkänen, A. Projections from the lateral, basal and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J. Comp. Neurol. 403, 229–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Petrovich, G.D., Canteras, N.S. & Swanson, L.W. Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res. Brain Res. Rev. 38, 247–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Kim, J.J. et al. Stress-induced alterations in hippocampal plasticity, place cells and spatial memory. Proc. Natl. Acad. Sci. USA 104, 18297–18302 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  118. McHugh, T.J., Blum, K.I., Tsien, J.Z., Tonegawa, S. & Wilson, M.A. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87, 1339–1349 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Tomar, A., Polygalov, D., Chattarji, S. & McHugh, T.J. The dynamic impact of repeated stress on the hippocampal spatial map. Hippocampus 25, 38–50 (2015). This study provided new insights into the gradual progression of the complex effects of chronic stress on hippocampal place cell activity and suggests that a loss of hippocampal network flexibility may contribute to some of the behavioral deficits caused by chronic stress.

    Article  PubMed  Google Scholar 

  120. Sapolsky, R.M., Krey, L.C. & McEwen, B.S. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr. Rev. 7, 284–301 (1986).

    Article  CAS  PubMed  Google Scholar 

  121. McEwen, B.S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Wilson, I.A., Ikonen, S., Gallagher, M., Eichenbaum, H. & Tanila, H. Age-associated alterations of hippocampal place cells are subregion specific. J. Neurosci. 25, 6877–6886 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, E.J. et al. Alterations of hippocampal place cells in foraging rats facing a 'predatory' threat. Curr. Biol. 25, 1362–1367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Maroun, M. & Richter-Levin, G. Exposure to acute stress blocks the induction of long-term potentiation of the amygdala–prefrontal cortex pathway in vivo. J. Neurosci. 23, 4406–4409 (2003). The first study, using in vivo extracellular field recordings, that demonstrated how the same stress that blocks LTP in the hippocampus also occludes LTP in the BLA-mPFC pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Richter-Levin, G. & Maroun, M. Stress and amygdala suppression of metaplasticity in the medial prefrontal cortex. Cereb. Cortex 20, 2433–2441 (2010).

    Article  PubMed  Google Scholar 

  126. Akirav, I. & Richter-Levin, G. Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat. J. Neurosci. 19, 10530–10535 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Akirav, I. & Richter-Levin, G. Mechanisms of amygdala modulation of hippocampal plasticity. J. Neurosci. 22, 9912–9921 (2002). An influential study that reported how priming of the BLA leads to enhanced LTP at perforant path inputs to the DG. This priming-induced enhancement was blocked by as systemic treatment with corticosterone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Packard, M.G., Cahill, L. & McGaugh, J.L. Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proc. Natl. Acad. Sci. USA 91, 8477–8481 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McGaugh, J.L. Memory—a century of consolidation. Science 287, 248–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Roozendaal, B., Griffith, Q.K., Buranday, J., Dominique, J.-F. & McGaugh, J.L. The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: dependence on the basolateral amygdala. Proc. Natl. Acad. Sci. USA 100, 1328–1333 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Abe, K. Modulation of hippocampal long-term potentiation by the amygdala: a synaptic mechanism linking emotion and memory. Jpn. J. Pharmacol. 86, 18–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Roozendaal, B. & McGaugh, J.L. Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol. Learn. Mem. 65, 1–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Kim, J.J., Lee, H.J., Han, J.S. & Packard, M.G. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J. Neurosci. 21, 5222–5228 (2001). This study provided early evidence that the amygdala plays a role in stress-induced modulation of hippocampal function in rodents. Lesions of the amygdala were shown to block stress-induced impairment of hippocampal LTP and retention of water-maze spatial training.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim, J.J., Koo, J.W., Lee, H.J. & Han, J.-S. Amygdalar inactivation blocks stress-induced impairments in hippocampal long-term potentiation and spatial memory. J. Neurosci. 25, 1532–1539 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Roozendaal, B., McReynolds, J.R. & McGaugh, J.L. The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J. Neurosci. 24, 1385–1392 (2004). This study showed that amygdala activation reverses stress-induced impairment in working memory, thereby providing evidence for interactions between the BLA and mPFC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kumar, S. et al. Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress. Nat. Commun. 5, 4537 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Ghosh, S., Laxmi, T.R. & Chattarji, S. Functional connectivity from the amygdala to the hippocampus grows stronger after stress. J. Neurosci. 33, 7234–7244 (2013). This study provided new insights into the functional consequences of the contrasting patterns of stress-induced plasticity in the intact hippocampus and amygdala in awake, behaving rats. Granger causality analysis identified a strong directional influence from the LA to area CA1 that persisted throughout and even after chronic stress, whereas directional coupling from area CA3 to CA1 became weaker.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liang, Z., King, J. & Zhang, N. Neuroplasticity to a single-episode traumatic stress revealed by resting-state fMRI in awake rats. Neuroimage 103, 485–491 (2014).

    Article  PubMed  Google Scholar 

  139. Likhtik, E., Stujenske, J.M., Topiwala, M.A., Harris, A.Z. & Gordon, J.A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17, 106–113 (2014). This study analyzed dynamic interactions in the mPFC-BLA network in learned fear and innate anxiety. States of high fear and anxiety were accompanied by enhanced theta-frequency power and synchrony in the mPFC-BLA circuit, thereby providing a powerful framework for investigating the neural basis of stress-induced modulation of fear and anxiety-related behaviors.

    Article  CAS  PubMed  Google Scholar 

  140. Allsop, S.A., Vander Weele, C.M., Wichmann, R. & Tye, K.M. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front. Behav. Neurosci. 8, 241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Root, C.M., Denny, C.A., Hen, R. & Axel, R. The participation of cortical amygdala in innate, odor-driven behaviour. Nature 515, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Namburi, P. et al. A circuit mechanism for differentiating positive and negative associations. Nature 520, 675–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Koob, G.F. A role for brain stress systems in addiction. Neuron 59, 11–34 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Koob, G.F. Brain stress systems in the amygdala and addiction. Brain Res. 1293, 61–75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Krishnan, V. & Nestler, E.J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Anisman, H. & Matheson, K. Stress, depression, and anhedonia: caveats concerning animal models. Neurosci. Biobehav. Rev. 29, 525–546 (2005).

    Article  PubMed  Google Scholar 

  147. Wang, M. et al. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation. J. Psychopharmacol. 26, 56–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Yuen, E.Y. et al. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc. Natl. Acad. Sci. USA 106, 14075–14079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Francis, D.D., Diorio, J., Plotsky, P.M. & Meaney, M.J. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J. Neurosci. 22, 7840–7843 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Krugers, H.J., Koolhaas, J., Bohus, B. & Korf, J. A single social stress-experience alters glutamate receptor-binding in rat hippocampal CA3 area. Neurosci. Lett. 154, 73–77 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology (DBT) and Defense Research and Development Organization (DRDO), Government of India, the Wadhwani Foundation, and the National Centre for Biological Sciences (NCBS), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumantra Chattarji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattarji, S., Tomar, A., Suvrathan, A. et al. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat Neurosci 18, 1364–1375 (2015). https://doi.org/10.1038/nn.4115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing