Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The case for rejecting the amyloid cascade hypothesis

Abstract

Alzheimer's disease (AD) is a biologically complex neurodegenerative dementia. Nearly 20 years ago, with the combination of observations from biochemistry, neuropathology and genetics, a compelling hypothesis known as the amyloid cascade hypothesis was formulated. The core of this hypothesis is that it is pathological accumulations of amyloid-β, a peptide fragment of a membrane protein called amyloid precursor protein, that act as the root cause of AD and initiate its pathogenesis. Yet, with the passage of time, growing amounts of data have accumulated that are inconsistent with the basically linear structure of this hypothesis. And while there is fear in the field over the consequences of rejecting it outright, clinging to an inaccurate disease model is the option we should fear most. This Perspective explores the proposition that we are over-reliant on amyloid to define and diagnose AD and that the time has come to face our fears and reject the amyloid cascade hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The degenerative events that ultimately produce the clinical symptoms of AD are fed by numerous deficiencies.

Similar content being viewed by others

David S. Knopman, Helene Amieva, … David T. Jones

References

  1. Querfurth, H.W. & LaFerla, F.M. Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Hebert, L.E., Weuve, J., Scherr, P.A. & Evans, D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80, 1778–1783 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alzheimer's Association . 2013 Alzheimer's disease facts and figures. Alzheimers Dement. 9, 208–245 (2013).

    Article  Google Scholar 

  4. Hyman, B.T., Van Hoesen, G.W., Damasio, A.R. & Barnes, C.L. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Zweig, R.M. et al. Neuropathology of aminergic nuclei in Alzheimer's disease. Prog. Clin. Biol. Res. 317, 353–365 (1989).

    CAS  PubMed  Google Scholar 

  6. Zweig, R.M. et al. The neuropathology of aminergic nuclei in Alzheimer's disease. Ann. Neurol. 24, 233–242 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Whitehouse, P.J. et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Braak, H. & Del Tredici, K. The pathological process underlying Alzheimer's disease in individuals under thirty. Acta Neuropathol. 121, 171–181 (2011).

    Article  PubMed  Google Scholar 

  9. Hamos, J.E., DeGennaro, L.J. & Drachman, D.A. Synaptic loss in Alzheimer's disease and other dementias. Neurology 39, 355–361 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. DeKosky, S.T. & Scheff, S.W. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Terry, R.D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Masliah, E., Mallory, M., Hansen, L., DeTeresa, R. & Terry, R.D. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 43, 192–197 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Selkoe, D.J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Arendt, T. Synaptic degeneration in Alzheimer's disease. Acta Neuropathol. 118, 167–179 (2009).

    Article  PubMed  Google Scholar 

  15. Schellenberg, G.D. & Montine, T.J. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol. 124, 305–323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanzi, R.E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hardy, J. et al. Pathways to Alzheimer's disease. J. Intern. Med. 275, 296–303 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Spires-Jones, T.L. & Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron 82, 756–771 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Palop, J.J. & Mucke, L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bertram, L., Lill, C.M. & Tanzi, R.E. The genetics of Alzheimer disease: back to the future. Neuron 68, 270–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Strittmatter, W.J. et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 1977–1981 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKhann, G.M. et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 263–269 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hardy, J.A. & Higgins, G.A. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Selkoe, D.J. Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann. NY Acad. Sci. 924, 17–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Citron, M. Strategies for disease modification in Alzheimer's disease. Nat. Rev. Neurosci. 5, 677–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Lemere, C.A. & Masliah, E. Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat. Rev. Neurol. 6, 108–119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson, P.T., Braak, H. & Markesbery, W.R. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J. Neuropathol. Exp. Neurol. 68, 1–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Mathis, C.A. et al. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett. 12, 295–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, W., Kung, M.P., Oya, S., Hou, C. & Kung, H.F. 18F-labeled styrylpyridines as PET agents for amyloid plaque imaging. Nucl. Med. Biol. 34, 89–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Villemagne, V.L. et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann. Neurol. 69, 181–192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klunk, W. et al. Amyloid imaging with PET in Alzheimer's disease, mild cognitive impairment, and clinically unimpaired subjects. in PET in the Evaluation of Alzheimer's Disease and Related Disorders (ed. Silverman, D.) 119–147 (Springer Science + Business Media LLC, 2009).

  34. Chen, X. et al. Pittsburgh compound B retention and progression of cognitive status–a meta-analysis. Eur. J. Neurol. 21, 1060–1067 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Villemagne, V.L. et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. LaFerla, F.M. & Green, K.N. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006320 (2012).

  37. Webster, S.J., Bachstetter, A.D., Nelson, P.T., Schmitt, F.A. & Van Eldik, L.J. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front. Genet. 5, 88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hochgräfe, K., Sydow, A. & Mandelkow, E.M. Regulatable transgenic mouse models of Alzheimer disease: onset, reversibility and spreading of Tau pathology. FEBS J. 280, 4371–4381 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Kitazawa, M., Medeiros, R. & Laferla, F.M. Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr. Pharm. Des. 18, 1131–1147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hock, B.J. Jr. & Lamb, B.T. Transgenic mouse models of Alzheimer's disease. Trends Genet. 17, S7–S12 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Götz, J. & Ittner, L.M. Animal models of Alzheimer's disease and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, J. et al. Normal cognition in transgenic BRI2-Aβ mice. Mol. Neurodegener. 8, 15 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whalen, B.M., Selkoe, D.J. & Hartley, D.M. Small non-fibrillar assemblies of amyloid beta-protein bearing the Arctic mutation induce rapid neuritic degeneration. Neurobiol. Dis. 20, 254–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Varvel, N.H. et al. Aβ oligomers induce neuronal cell cycle events in Alzheimer's disease. J. Neurosci. 28, 10786–10793 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shankar, G.M. et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cramer, P.E. et al. ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schenk, D. et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Dodart, J.C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat. Neurosci. 5, 452–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Kotilinek, L.A. et al. Reversible memory loss in a mouse transgenic model of Alzheimer's disease. J. Neurosci. 22, 6331–6335 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Janus, C. et al. A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408, 979–982 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Orgogozo, J.M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Serrano-Pozo, A. et al. Beneficial effect of human anti-amyloid-beta active immunization on neurite morphology and tau pathology. Brain 133, 1312–1327 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Doody, R.S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370, 311–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370, 322–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vellas, B. et al. Designing drug trials for Alzheimer's disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheimers Dement. 9, 438–444 (2013).

    Article  PubMed  Google Scholar 

  57. Sperling, R.A. et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 280–292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Herrup, K. Reimagining Alzheimer's disease–an age-based hypothesis. J. Neurosci. 30, 16755–16762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Herrup, K. Current conceptual view of Alzheimer's disease. in Alzheimer's Disease × Modernizing Concept, Biological Diagnosis and Therapy Vol. 28 (eds. Carrillo, M.C. & Hampel, H.) 30–48 (Karger, 2012).

  60. Nixon, R.A. & Yang, D.S. Autophagy failure in Alzheimer's disease-locating the primary defect. Neurobiol. Dis. 43, 38–45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nixon, R.A. & Cataldo, A.M. Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease. J. Alzheimers Dis. 9, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Bezprozvanny, I. & Mattson, M.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci. 31, 454–463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Demuro, A., Parker, I. & Stutzmann, G.E. Calcium signaling and amyloid toxicity in Alzheimer disease. J. Biol. Chem. 285, 12463–12468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Green, K.N. & LaFerla, F.M. Linking calcium to Aβ and Alzheimer's disease. Neuron 59, 190–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Khachaturian, Z.S. Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol. Aging 8, 345–346 (1987).

    Article  CAS  PubMed  Google Scholar 

  66. Supnet, C. & Bezprozvanny, I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 47, 183–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Szydlowska, K. & Tymianski, M. Calcium, ischemia and excitotoxicity. Cell Calcium 47, 122–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Yu, J.T., Chang, R.C. & Tan, L. Calcium dysregulation in Alzheimer's disease: from mechanisms to therapeutic opportunities. Prog. Neurobiol. 89, 240–255 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Arendt, T., Bruckner, M.K., Mosch, B. & Losche, A. Selective cell death of hyperploid neurons in Alzheimer's disease. Am. J. Pathol. 177, 15–20 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boeras, D.I. et al. Alzheimer's presenilin 1 causes chromosome missegregation and aneuploidy. Neurobiol. Aging 29, 319–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Busser, J., Geldmacher, D.S. & Herrup, K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J. Neurosci. 18, 2801–2807 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat. Rev. Neurosci. 8, 368–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Kruman, I.I. et al. Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41, 549–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. McShea, A., Harris, P.L., Webster, K.R., Wahl, A.F. & Smith, M.A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer's disease. Am. J. Pathol. 150, 1933–1939 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nagy, Z., Esiri, M.M., Cato, A.M. & Smith, A.D. Cell cycle markers in the hippocampus in Alzheimer's disease. Acta Neuropathol. 94, 6–15 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Vincent, I., Rosado, M. & Davies, P. Mitotic mechanisms in Alzheimer's disease? J. Cell Biol. 132, 413–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, Y., Geldmacher, D.S. & Herrup, K. DNA replication precedes neuronal cell death in Alzheimer's disease. J. Neurosci. 21, 2661–2668 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, Y., Mufson, E.J. & Herrup, K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J. Neurosci. 23, 2557–2563 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mosher, K.I. & Wyss-Coray, T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem. Pharmacol. 88, 594–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cameron, B. & Landreth, G.E. Inflammation, microglia, and Alzheimer's disease. Neurobiol. Dis. 37, 503–509 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Heneka, M.T. & O′Banion, M.K. Inflammatory processes in Alzheimer's disease. J. Neuroimmunol. 184, 69–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. McGeer, P.L., Schulzer, M. & McGeer, E.G. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology 47, 425–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Krstic, D. & Knuesel, I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat. Rev. Neurol. 9, 25–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Zhu, X. et al. Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J. Alzheimers Dis. 9, 147–153 (2006).

    Article  PubMed  Google Scholar 

  85. Mouton-Liger, F. et al. Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochim. Biophys. Acta 1822, 885–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Bucholtz, N. & Demuth, I. DNA-repair in mild cognitive impairment and Alzheimer's disease. DNA Repair (Amst.) 12, 811–816 (2013).

    Article  CAS  Google Scholar 

  87. Canugovi, C., Misiak, M., Ferrarelli, L.K., Croteau, D.L. & Bohr, V.A. The role of DNA repair in brain related disease pathology. DNA Repair (Amst.) 12, 578–587 (2013).

    Article  CAS  Google Scholar 

  88. Coppedè, F. & Migliore, L. DNA damage and repair in Alzheimer's disease. Curr. Alzheimer Res. 6, 36–47 (2009).

    Article  PubMed  Google Scholar 

  89. Cotman, C.W. & Su, J.H. Mechanisms of neuronal death in Alzheimer's disease. Brain Pathol. 6, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Herrup, K., Li, J. & Chen, J. The role of ATM and DNA damage in neurons: upstream and downstream connections. DNA Repair (Amst.) 12, 600–604 (2013).

    Article  CAS  Google Scholar 

  91. Iourov, I.Y., Vorsanova, S.G., Liehr, T. & Yurov, Y.B. Aneuploidy in the normal, Alzheimer's disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol. Dis. 34, 212–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Lovell, M.A. & Markesbery, W.R. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res. 35, 7497–7504 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weissman, L., de Souza-Pinto, N.C., Mattson, M.P. & Bohr, V.A. DNA base excision repair activities in mouse models of Alzheimer's disease. Neurobiol. Aging 30, 2080–2081 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Swerdlow, R.H., Burns, J.M. & Khan, S.M. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim. Biophys. Acta 1842, 1219–1231 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Swerdlow, R.H. & Khan, S.M.A. “Mitochondrial cascade hypothesis” for sporadic Alzheimer's disease. Med. Hypotheses 63, 8–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Yao, J. et al. Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 106, 14670–14675 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hunter, S., Arendt, T. & Brayne, C. The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol. Neurobiol. 48, 556–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Ferreira, S.T., Clarke, J.R., Bomfim, T.R. & De Felice, F.G. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimers Dement. 10, S76–S83 (2014).

    Article  PubMed  Google Scholar 

  99. Cholerton, B., Baker, L.D. & Craft, S. Insulin, cognition, and dementia. Eur. J. Pharmacol. 719, 170–179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, R. et al. Metabolic stress modulates Alzheimer's beta-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. Cell Metab. 17, 685–694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks his many friends and colleagues whose spirited discussions over the years have helped sharpen the arguments raised here. Special thanks to S. Herculano-Houzel for her critical and insightful reading of an early draft of the work. Support for the writing came from The Hong Kong University of Science and Technology, the National Key Basic Research Program of China (2013CB530900), the Research Grants Council, Hong Kong Special Administrative Region (GRF660813) and the BrightFocus Foundation (A2012101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Herrup.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18, 794–799 (2015). https://doi.org/10.1038/nn.4017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing