Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A neural circuit for circadian regulation of arousal

Abstract

An unknown aspect of behavioral state regulation is how the circadian oscillator of the suprachiasmatic nucleus (SCN) regulates sleep and waking. In this report, we describe the necessary elements for a circuit that provides circadian regulation of arousal. Trans-synaptic retrograde tracing revealed a prominent indirect projection from the SCN to the noradrenergic nucleus locus coeruleus (LC), a brain arousal system. Double-labeling experiments revealed several possible links between the SCN and the LC, including the dorsomedial (DMH) and paraventricular hypothalamic nuclei (PVN), as well as medial and ventrolateral pre-optic areas. Lesion studies confirmed that the DMH is a substantial relay in this circuit. Next, neurophysiology experiments revealed circadian variations in LC impulse activity. Lesions of the DMH eliminated these circadian changes in LC activity, confirming the functionality of the SCN–DMH–LC circuit. These results reveal mechanisms for regulation of circadian and sleep–waking functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PRV injection site in the LC.
Figure 2: Retrograde labeling in the PGi in the rostral ventrolateral medulla at various times of survival following PRV microinjection into the LC.
Figure 3: Retrograde labeling with PRV in the SCN.
Figure 4: Distribution of PRV-labeled neurons in the hypothalamus in an animal perfused 35 h after an injection of the PRV + CTb cocktail into the LC.
Figure 5: Double retrograde labeling in the SCN.
Figure 6: PRV labeling following DMH lesions.
Figure 7: Dual labeling in the DMH for PRV retrogradely transported from the LC and PHA-L anterogradely transported from the SCN.
Figure 8: LC impulse activity during the circadian cycle.

Similar content being viewed by others

References

  1. Klein, D. C., Moore, R. Y. & Reppert, S. M. Suprachiasmatic Nucleus–The Mind's Clock (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  2. Gillette, M. U. & Tischkau, S. A. Suprachiasmatic nucleus: the brain's circadian clock. Recent Prog. Horm. Res. 54, 33–58 (1999).

    CAS  Google Scholar 

  3. Steriade, M. & McCarley, R. W. Brainstem Control of Wakefulness and Sleep (Plenum, New York, London, 1990).

    Book  Google Scholar 

  4. Sherin, J. E., Shiromani, P. J., Mc Carley, R. W. & Saper, C. B. Activation of ventrolateral preoptic neurons during sleep. Science 271, 216–219 (1996).

    Article  CAS  Google Scholar 

  5. Edgar, D. M., Dement, W. C. & Fuller, C. A. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J. Neurosci. 13, 1065–1079 (1993).

    Article  CAS  Google Scholar 

  6. Achermann, P. & Borbely, A. A. Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process. Biol. Cybern. 71, 115–121 (1994).

    Article  CAS  Google Scholar 

  7. Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189, 55–58 (1975).

    Article  CAS  Google Scholar 

  8. Aston-Jones, G. & Bloom, F. E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1, 876–886 (1981).

    Article  CAS  Google Scholar 

  9. Berridge, C. W. & Foote, S. L. Effects of locus coeruleus activation on electroencephalographic activity in the neocortex and hippocampus. J. Neurosci. 11, 3135–3145 (1991).

    Article  CAS  Google Scholar 

  10. Card, J. P. et al. Pseudorabies virus infection of the rat central nervous system: ultrastructural characterization of viral replication, transport, and pathogenesis. J. Neurosci. 13, 2515–2539 (1993).

    Article  CAS  Google Scholar 

  11. Chen, S., Ming, X., Miselis, R. & Aston-Jones, G. Characterization of transsynaptic tracing with central application of Pseudorabies virus. Brain Res. 838, 171–183 (1999).

    Article  CAS  Google Scholar 

  12. Aston-Jones, G. & Card, J. P. Use of Pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J. Neurosci. Methods 103, 51–61 (2000).

    Article  CAS  Google Scholar 

  13. Jasmin, L., Burkey, A. R., Card, J. P. & Basbaum, A. I. Transneuronal labeling of a nociceptive pathway, the spino- (trigeminal-) parabrachio-amygdaloid, in the rat. J. Neurosci. 17, 3751–3765 (1997).

    Article  CAS  Google Scholar 

  14. O'Donnell, P. Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. J. Neurosci. 17, 2143–2167 (1997).

    Article  CAS  Google Scholar 

  15. Usher, M., Cohen, J. D., Rajkowski, J., Kubiak, P. & Aston-Jones, G. The role of locus coeruleus in the regulation of cognitive performance. Science 283, 549–554 (1999).

    Article  CAS  Google Scholar 

  16. Aston-Jones, G., Rajkowski, J. & Cohen, J. Locus coeruleus and regulation of behavioral flexibility and attention. Prog. Brain Res. 126, 165–182 (2000).

    Article  CAS  Google Scholar 

  17. Johnson, M. P. et al. Short-term memory, alertness and performance: a reappraisal of their relationship to body temperature. J. Sleep Res. 1, 24–29 (1992).

    Article  CAS  Google Scholar 

  18. Aston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T. & Shipley, M. T. The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234, 734–737 (1986).

    Article  CAS  Google Scholar 

  19. Luppi, P.-H., Aston-Jones, G., Akaoka, H., Chouvet, G. & Jouvet, M. Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience 65, 119–160 (1995).

    Article  CAS  Google Scholar 

  20. Aston-Jones, G., Shipley, M. T. & Grzanna, R. in The Rat Nervous System (ed. Paxinos, G.) 183–214 (Academic, New York, 1995).

    Google Scholar 

  21. Watts, A. G., Swanson, L. W. & Sanchez-Watts, G. Efferent projections of the suprachiasmatic nucleus: I. studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 258, 204–229 (1987).

    Article  CAS  Google Scholar 

  22. Bernardis, L. L. & Bellinger, L. L. The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc. Soc. Exp. Biol. Med. 218, 284–306 (1998).

    Article  CAS  Google Scholar 

  23. Bernardis, L. L. Ventromedial and dorsomedial hypothalamic syndromes in the weanling rat: is the “center” concept really outmoded? Brain Res. Bull. 14, 537–549 (1985).

    Article  CAS  Google Scholar 

  24. Card, J. P., Levitt, P. & Enquist, L. W. Different patterns of neuronal infection after intracerebral injection of two strains of pseudorabies virus. J. Virol. 72, 4434–4441 (1998).

    CAS  Google Scholar 

  25. Billig, I., Foris, J., Card, J. P. & Yates, B. J. Transneuronal tracing of neural pathways controlling an abdominal muscle, rectus abdominus, in the ferret. Brain Res. 820, 31–44 (1999).

    Article  CAS  Google Scholar 

  26. Loewy, A. D. Forebrain nuclei involved in autonomic control. Prog. Brain Res. 87, 253–268 (1991).

    Article  CAS  Google Scholar 

  27. Morin, L. P., Goodless-Sanchez, N., Smale, L. & Moore, R. Y. Projections of the suprachiasmatic nuclei, subparaventricular zone and retrochiasmatic area in the golden hamster. Neuroscience 61, 391–410 (1994).

    Article  CAS  Google Scholar 

  28. Buijs, R. M. The anatomical basis for the expression of circadian rhythms: the efferent projections of the suprachiasmatic nucleus. Prog. Brain Res. 111, 229–240 (1996).

    Article  CAS  Google Scholar 

  29. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    Article  CAS  Google Scholar 

  30. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).

    Article  CAS  Google Scholar 

  31. Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).

    Article  CAS  Google Scholar 

  32. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  Google Scholar 

  33. Horvath, T. L. et al. Strong hypocretin (orexin) innervation of the locus coeruleus activates noradrenergic cells. J. Comp. Neurol. 415, 145–159 (1999).

    Article  CAS  Google Scholar 

  34. Ivanov, A. & Aston-Jones, G. Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. Neuroreport 11, 1755–1758 (2000).

    Article  CAS  Google Scholar 

  35. Hagan, J. J. et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. USA 96, 10911–10916 (1999).

    Article  CAS  Google Scholar 

  36. Semba, J.-I., Toru, M. & Mataga, N. Twenty-four hour rhythms of norepinephrine and serotonin in nucleus suprachiasmaticus, raphe nuclei, and locus coeruleus in the rat. Sleep 7, 211–218 (1984).

    Article  CAS  Google Scholar 

  37. Foote, S. L., Bloom, F. E. & Aston-Jones, G. Nucleus locus ceruelus: new evidence of anatomical and physiological specificity. Physiol. Rev. 63, 844–914 (1983).

    Article  CAS  Google Scholar 

  38. Berridge, C. W. & Foote, S. L. Enhancement of behavioral and electroencephalographic indices of waking following stimulation of noradrenergic B-receptors within the medial septal region of the basal forebrain. J. Neurosci. 16, 6999–7009 (1996).

    Article  CAS  Google Scholar 

  39. Berridge, C. W. & Espana, R. A. Synergistic sedative effects of noradrenergic a1 and b-receptor blockade in forebrain electroencephalographic and behavioral indices. Neuroscience 99, 495–505 (2000).

    Article  CAS  Google Scholar 

  40. Weitzman, E. D. Sleep and its disorders. Annu. Rev. Neurosci. 4, 381–417 (1981).

    Article  CAS  Google Scholar 

  41. Wirz-Justice, A. & Van den Hoofdakker, R. H. Sleep deprivation in depression: what do we know, where do we go? Biol. Psychiatry 46, 445–453 (1999).

    Article  CAS  Google Scholar 

  42. Robbins, T. W. & Everitt, B. J. in Psychopharmacology: The Fourth Generation of Progress (eds. Kupfer, D. J. & Bloom, F. E.) 363–372 (Raven, New York, 1995).

    Google Scholar 

  43. Devauges, V. & Sara, S. J. Memory retrieval enhancement by locus coeruleus stimulation: evidence for mediation by beta-receptors. Behav. Brain Res. 43, 93–97 (1991).

    Article  CAS  Google Scholar 

  44. Aghajanian, G. K. & Gallager, D. W. Raphe origin of serotonergic nerve terminating in the cerebral ventricles. Brain Res. 88, 221–231 (1975).

    Article  CAS  Google Scholar 

  45. Chen, S. & Aston-Jones, G. Extensive projections from the midbrain periaqueductal gray to the caudal ventrolateral medulla: A retrograde and anterograde tracing study in the rat. Neuroscience 71, 443–459 (1996).

    Article  CAS  Google Scholar 

  46. Jodo, E., Chiang, C. & Aston-Jones, G. Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience 83, 63–80 (1998).

    Article  CAS  Google Scholar 

  47. Ennis, M. & Aston-Jones, G. Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain. J. Neurosci. 8, 3644–3657 (1988).

    Article  CAS  Google Scholar 

  48. Swanson, L. W. Brain Maps: Structure of the Rat Brain (Elsevier, Amsterdam, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank R. Miselis and J. Druhan for advice and comments on the manuscript. We also thank E. Haggerty for comments as well as for assistance with monitoring locomotor activity. This work was supported by PHS grant NS24698.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Aston-Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aston-Jones, G., Chen, S., Zhu, Y. et al. A neural circuit for circadian regulation of arousal. Nat Neurosci 4, 732–738 (2001). https://doi.org/10.1038/89522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89522

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing