Skip to main content
Originalartikel

Auswirkungen einer Tanz- und Kraft-Ausdauer-Intervention auf kognitive Fähigkeiten älterer Menschen

Published Online:https://doi.org/10.1024/1016-264X/a000124

Mentale und körperliche Gesundheit sind eng verbunden mit einem erfolgreichen Altern. Diese Studie untersucht die Auswirkungen eines Tanztrainings im Vergleich zu einem Kraft-/Ausdauertraining sowie der Kombination beider auf die fluide Intelligenz, die allgemeine Intelligenz und das Arbeitsgedächtnis älterer Menschen (M=68 ± 4.16 Jahre). 95 Senioren wurden in folgenden Gruppen randomisiert: 1. Tanz, 2. Sport, 3. Tanz und Sport. Die Gruppe Tanz und die Gruppe Sport trainierten 90 Minuten, die Gruppe Tanz und Sport 180 Minuten für 15 Monate. Die Ergebnisse zeigen signifikante Leistungssteigerungen in allen gemessenen Merkmalen in den drei Gruppen. Post Hoc Vergleiche verdeutlichen, dass sich die Leistungssteigerungen zwischen den Gruppen signifikant nicht unterscheiden. Körperliche Bewegung jeglicher Art trägt zum erfolgreichen Altern bei.


The Effect of Dance- and Strength-Endurance Intervention on Cognitive Abilities in Elderly People

Mental and physical health is closely related to successful aging. This study examined the effects of dance training compared to strength/endurance training and a combination of both on fluid intelligence, general intelligence and working memory of older individuals (M=68 ± 4.16 yr.). 95 seniors were randomly assigned to the following groups: 1. Dance, 2. Sport, 3. Dance and Sport. The dance group and the sport group practiced 90 minutes, and the group dance and sport for 180 minutes for 15 months. The results show significant performance increases in all measured variables in the three groups. Post Hoc analysis clarify, that the improvements do not differ between the groups significantly. Any physical activity contributes to successful aging.

Literatur

  • Angevaren, M. , Aufdemkampe, G. , Verhaar, H.J. , Aleman, A. & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, 3, CD005381. First citation in articleGoogle Scholar

  • Alpert, P. T. , Miller, S. K. , Wallmann, H. , Havey, R. , Cross, C. , Chevalia, T. (2009). The effect of modified jazz dance on balance, cognition, and mood in older adults. Journal of the American Academy of Nurse Practitioners, 21, 108 – 115. First citation in articleCrossrefGoogle Scholar

  • Bopp, K. L. & Verhaegen, P. (2005). Aging and verbal memory span: A meta-analysis, Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 5, 223 – 233. First citation in articleCrossrefGoogle Scholar

  • Churchill, J. , Galvez, R. , Colcombe, S. , Swain, R. , Kramer, A. & Greenough, W. (2002). Exercise, experience and the aging brain. Neurobiology of Aging, 23, 941 – 955. First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1977). Statistical power analysis for behavioral science. New York: Academic Press. First citation in articleGoogle Scholar

  • Colcombe, S. & Kramer, A. (2003). Fitness effects on cognitive function of older adults: A meta-analystic study. Psychological Science, 14, 125 – 130. First citation in articleCrossrefGoogle Scholar

  • Colcombe, S. , Erickson, K. , Scalf, P. , Kim, J. , Prakash, R. , McAuley, E. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61, 1166 – 1170. First citation in articleCrossrefGoogle Scholar

  • Deley, G. , Kervio, G. , Van Hoecke, J. , Verges, B. , Grassi, B. & Casillas, J. (2007). Effects of a one-year exercise training program in adults over 70 years old: a study with a control group. Aging Clinical and Experimental Research, 19, 310 – 315. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I. , Prakash, R. S. , Voss, M. V. , Chaddock, L. , Hu, L. , Morris, K. S. et al. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. HIPPOCAMPUS, 19, 1030 – 1139. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I. , Voss, M. V. , Prakash, R. S. , Basak, C. , Szabof, A. , Chaddock, L. et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108, 3017 – 3022. First citation in articleCrossrefGoogle Scholar

  • Gazzaniga, M. (2008). Learning, Arts and the Brain: The Dana Consortium Report on Arts and Cognition. New York, Washington, DC: Dana Press. First citation in articleGoogle Scholar

  • Gold, A. (1995). Gedächtnisleistungen im höheren Erwachsenenalter. Der Einfluss von Vorwissen und Aufgabenkomplexität. Bern, Göttingen, Toronto, Seattle: Verlag Hans Huber. First citation in articleGoogle Scholar

  • Hillman, C. H. , Erickson, K. I. & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58 – 65. First citation in articleCrossrefGoogle Scholar

  • Hirsch, O. , Lehmann, W. , Corth, M. , Röhrle, B. , Schmidt, S. & Schipper, H. I. (2003). Visuelle Vorstellungsfähigkeit, Bewegungsvorstellung und mentales Rotieren bei Morbus Parkinson. Zeitschrift für Neuropsychologie, 14, 67 – 80. First citation in articleLinkGoogle Scholar

  • Horn, W. (1983). L-P-S Leistungsprüfsystem (2. Auflage). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Jäger, A. O. , Süß, H. M. & Beauducel, A. (1997). Berliner Intelligenzstruktur-Test (Form 4). Göttingen, Bern, Toronto, Seattle: Hogrefe. First citation in articleGoogle Scholar

  • Jäncke, L. (2009). Macht Musik schlau? Neue Erkenntnisse aus den Neurowissenschaften und der kognitiven Psychologie. Bern: Hans Huber. First citation in articleGoogle Scholar

  • Jäncke, L. (2013). Music making and the aging brain. Zeitschrift für Neuropsychologie, 24, 113 – 121. First citation in articleLinkGoogle Scholar

  • Jernigan T. L., Archibald S. L. & Fennema-Notestine C. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging, 22, 581 – 594. First citation in articleCrossrefGoogle Scholar

  • Kattenstroth, J. C. , Kolankowska, I. , Kalisch, T. & Dinse, H.R. (2010). Superior sensory, motor, and cognitive performance in elderly individuals with multiyear dancing activities. Frontiers in Aging Neuroscience, 2, 1 – 9. First citation in articleGoogle Scholar

  • Kattenstroth, J. C. , Kalisch, T. , Holt S., Tegenthoff , T. & Dinse, H. R. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Frontiers in Aging Neuroscience, 5, 1 – 16. First citation in articleCrossrefGoogle Scholar

  • Kimura, K. & Hozumi, N. (2012). Investigating the acute effect of an aerobic dance exercise program on neurocognitive function in the elderly. Psychology of Sport and Exercise 13, 623 – 629. First citation in articleCrossrefGoogle Scholar

  • Kramer, A. F. , Hahn, S. , Cohen, N. J. , Banisch, M. T. , McAuley, E. , Harrison, C. R. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418 – 419. First citation in articleCrossrefGoogle Scholar

  • Kramer, A. F , Erickson, K. I. & Colcombe, S. A. (2006). Exercise, cognition, and the aging brain. Journal of Applied Physiology, 101, 1237 – 1242. First citation in articleCrossrefGoogle Scholar

  • Kramer, A. F. & Erickson, K. I. (2007). Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 1, 342 – 358. First citation in articleCrossrefGoogle Scholar

  • Lohaus, A. , Vierhaus, M. & Maass, A. (2010). Entwicklungspsychologie des Kindes- und Jugendalters. Heidelberg: Springer Verlag. First citation in articleCrossrefGoogle Scholar

  • Mattson, M. (2008). Hormesis defined. Ageing Research Reviews, 7, 1 – 7. First citation in articleCrossrefGoogle Scholar

  • Neeper, S. A. , Gomez-Pinilla, F. , Choi, J. & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109. First citation in articleCrossrefGoogle Scholar

  • Oswald, W. & Roth, E. (1987). Der Zahlen-Verbindungs-Test. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Reisberg, B. & Saeed, M. U. (2004). Alzheimer’s disease. New York City: Norton. First citation in articleGoogle Scholar

  • Rowe, J. & Kahn, R. (1997). Successful aging. The Gerontologist, 37, 433 – 440. First citation in articleCrossrefGoogle Scholar

  • Se-Hong Kim, Minjeong Kim , Yu-Bae Ahn, Hyun-Kook Lim , Sung-Goo Kang, Jung-hyoun Cho (2011). Effect of dance exercise on cognitive function in elderly patients with metabolic syndrome: A pilot study. Journal of Sports Science and Medicine, 10, 671 – 678. First citation in articleGoogle Scholar

  • Störkel, F. (2005). Aufnehmen, Verarbeiten, Speichern und Abrufen: Grundlagen der biologischen Informationsverarbeitung am Beispiel Gehirn und Immunsystem. Heidelberg: Springer. First citation in articleGoogle Scholar

  • Sturm, W. , Willmes, K. & Horn, J. (1993). Leistungsprüfungssystem für 50 bis 90-Jährige. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Sumic, A. , Michael, Y. , Carlson, N. , Howieson, D. & Kaye, J. (2007). Physical activity and the risk of dementia in oldest old. Journal of Aging and Health, 19, 242 – 259. First citation in articleCrossrefGoogle Scholar

  • Swaab, D. F. , Dubelaar, E. J. G. , Scherder, E. J. A. , van Someren, E. J. W & Verwer, R. W. H. (2003). Therapeutic strategies for Alzheimer disease focus on neuronal reactivation of metabolically impaired neurons. Alzheimer Disease and Associated Disorders, 17, 114 – 122. First citation in articleCrossrefGoogle Scholar

  • Thomas, A. G. , Dennis, A. , Bandettini, P. A. & Johansen-Berg, H. (2012). The effects of aerobic activity on brain structure. Frontiers in Psychology, 3, 1 – 9. First citation in articleCrossrefGoogle Scholar

  • Vaynman, S. & Gomez-Pinilla, F. (2006). Revenge of the „sit”: How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Neuroscience Research, 84, 699 – 715. First citation in articleCrossrefGoogle Scholar

  • Verghese, J. , Lipton, R. B. , Katz, M. J. , Hall C. B., Derby , C. A., Kuslansky , G. (2003). Leisure activities and the risk of dementia in the elderly. The New England Journal of Medicine, 348, 2508 – 2516. First citation in articleCrossrefGoogle Scholar

  • Verghese, J. (2006). Cognitive and mobility profile of older social dancers. Journal of the American Geriatrics Society, 54, 1241 – 1244. First citation in articleCrossrefGoogle Scholar

  • Voelcker-Rehage, C. , Godde, B. & Staudinger, U. (2010). Physical and motor fitness are both related to cognition in old age. European Journal of Neuroscience, 31, 167 – 176. First citation in articleCrossrefGoogle Scholar

  • Walter, U. & Schwartz, F.W. (2001). Gesundheit der Älteren und Potenziale der Prävention und Gesundheitsförderung. In Deutsches Zentrum für Altersfragen (Hrsg.). Expertisen zum dritten Altenbericht. Personale, gesundheitliche und Umweltressourcen im Alter (S. 153 – 261). Leverkusen: Leske & Budrich. First citation in articleCrossrefGoogle Scholar

  • Yaffe, K. , Fiocco,A. J., Lindquist , K., Vittinghoff , E., Simonsick , E. M., Newman , A. B. et al. (2009). Predictors of maintaining cognitive function in older adults. Neurology, 72, 2029 – 2035. First citation in articleCrossrefGoogle Scholar