Skip to main content
Log in

Empfehlungen zum hämodynamischen Monitoring in der internistischen Intensivmedizin

Recommendations on hemodynamic monitoring in internal intensive care medicine

  • Empfehlungen und Stellungnahmen
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Das hämodynamische Monitoring in der kardiovaskulären Intensivmedizin wird unterteilt in Komponenten des Basismonitorings und des erweiterten Monitorings. Unverzichtbares Basismonitoring ist die Kombination aus EKG, Körpertemperatur, Sauerstoffsättigung, nichtinvasivem Blutdruck, Urinproduktion und dem „klinischen Blick“, bestehend aus gründlicher klinischer Untersuchung und Anamnese. Das Basismonitoring kann mit einer Vielfalt differenzierter erweiterter Monitoringverfahren ergänzt werden, die im Einzelfall für den in der Anwendung Geübten extrem nützlich sein können, aber, wenn undifferenziert eingesetzt, mehr schaden als helfen. Für kritische Phasen der Akuttherapie auf der Intensivstation, insbesondere für das Nichtansprechen auf etablierte Therapieformen müssen differenzierte Optionen erwogen werden. Hierzu werden in dieser Arbeit Empfehlungen abgegeben. Der bettseitige, möglichst zeitnah verfügbare Einsatz der Echokardiographie bzw. Sonographie ist das zentrale Modul in der Diagnostik, Überwachung und Therapiesteuerung kritisch kranker Intensivpatienten und kann Volumenreagibilität und hämodynamischen Unterstützungsbedarf abschätzen. Die Ausbildung und Expertise in diesen Verfahren ist daher unverzichtbar und unterstreicht die zentrale Rolle des internistisch-kardiologisch ausgebildeten Intensivmediziners.

Abstract

Hemodynamic monitoring of critically ill cardiovascular patients consists of basic monitoring and extended monitoring measures. Basic monitoring should be used in all patients and consists of electrocardiography, body temperature, transcutaneous oxygen saturation, non-invasive blood pressure, measurement of urine production and clinical assessment. Multiple modalities of extended monitoring measures are available that can supplement basic monitoring, especially when the patient does not respond to the applied treatment. They are useful for experienced physicians in selected cases but when used in an undifferentiated way most modalities induce harm rather than benefits; therefore, extended monitoring has to be individually tailored to each patient. This article gives recommendations for the use of the various modalities available. The use of bedside echocardiography is a central tool in diagnostics and surveillance of critically ill cardiovascular patients and can be used to guide fluid management and hemodynamic support. Thus, training and expertise in cardiovascular intensive care and echocardiographic imaging are indispensable prerequisites for the treatment of critically ill patients. This underscores the important role of trained personnel in cardiovascular intensive care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

BGA:

Blutgasanalyse

CI:

Cardiac Index (HZV bezogen auf Körperoberfläche)

CPO/CPI:

Cardiac Power Output/Index

GEDV:

Globales enddiastolisches Volumen

HZV:

Herzzeitvolumen

ITBV:

Intrathorakales Blutvolumen

LVEDP:

Linksventrikulärer enddiastolischer Druck

LVEDV(i):

Linksventrikuläres enddiastolisches Volumen(-index)

MAD:

Mittlerer arterieller Druck

MPI:

Myocardial Performance Index (Tei-Index)

PAOP:

Pulmonalarterieller Okklusionsdruck

PAP:

Pulmonalarterieller Druck

PLR:

Passiver Beinhebeversuch

PPV:

Pulsdruckvariation

PVR:

Pulmonalvaskulärer Gefäßwiderstand

RAP:

Rechtsatrialer Druck

RVCPI:

Rechtsventrikulärer Cardiac Power Index

ScvO2 :

Zentralvenöse Sauerstoffsättigung

SPV:

Systolische Druckvariation

SV:

Schlagvolumen

SVV:

Schlagvolumenvariation

TAPSE:

Systolische Exkursion der Trikuspidalklappenebene

TASV:

Systolische Geschwindigkeit der Trikuspidalklappenebene

ZVD:

Zentralvenöser Druck

Literatur

  1. Werdan K, Ruß M, Buerke M (2011) S3 Leitlinie: Infarktbedingter kardiogener Schock – Diagnose, Monitoring und Therapie. http://www.awmf.org/leitlinien/detail/ll/019-013.html. Zugegriffen: 30.05.2016

    Google Scholar 

  2. Forrester JS, Diamond G, Chatterjee K, Swan HJC (1976) Medical therapy of acute myocardial infarction by application of hemodynamic subsets. New Engl J Med 295:1404–1413

    Article  CAS  PubMed  Google Scholar 

  3. Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, Stevenson LW (2003) Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol 41:1797–1804

    Article  PubMed  Google Scholar 

  4. Jansen TC, Bommel J van, Bakker J (2009) Blood lactate monitoring in critically ill patients: a systematic health technology assessment. Crit Care Med 37:2827–2839

    Article  PubMed  Google Scholar 

  5. Campaign SS (2015) Updated Bundles in Response to New Evidence. http://www.survivingsepsis.org/SiteCollectionDocuments/SSC_Bundle.pdf. Zugegriffen: 30.05.2016

    Google Scholar 

  6. Janssens U (2000) Hämodynamisches Monitoring. Internist 41:995–1018

    Article  CAS  PubMed  Google Scholar 

  7. Reinhart K, Kuhn H, Hartog C, Bredle D (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30:1572–1578

    Article  PubMed  Google Scholar 

  8. Scheer BV, Perel A, Pfeiffer UJ (2002) Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care 6:199–204

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drexler H, Bonin J von (2002) Kardiogener Schock nach Myokardinfarkt: Therapieansätze. In: Eckart J, Forst H, Burchardi H (Hrsg) Intensivmedizin Kompendium und Repetitorium zur interdisziplinären Fort- und Weiterbildung. Ecomed, Landsberg, S 1–12

    Google Scholar 

  10. Janssens U, Graf J (2005) Systemische Optimierung des O2-Angebotes. Kardiologische Optimierung (Systemic Optimisation of Oxygen-delivery – Cardiac Improvement). Anasthesiol Intensivmed Notfallmed Schmerzther 40:640–652

    Article  CAS  PubMed  Google Scholar 

  11. Calzia P (2005) Determinants of blood flow and organ perfusion. In: Pinsky MR, Payen D (Hrsg) Functional hemodynamic monitoring. Springer, Heidelberg, S 19–32

    Chapter  Google Scholar 

  12. Janssens U, Kluge S (2015) Indikation und Steuerung der Volumentherapie. Med Klin Intensivmed Notfmed 110:110–117

    Article  CAS  PubMed  Google Scholar 

  13. Reuter DA, Goetz AE, Peter K (2003) Assessment of volume responsiveness in mechanically ventilated patients. Anaesthesist 52:1005–1013

    Article  CAS  PubMed  Google Scholar 

  14. Hagendorff A, Tiemann K, Simonis G, Campo dell’ Orto M, Bardeleben S von (2014) Empfehlungen zur Notfallechokardiographie. Kardiologe 8:45–64

    Article  Google Scholar 

  15. Lee CWC, Kory PD, Arntfield RT (2016) Development of a fluid resuscitation protocol using inferior vena cava and lung ultrasound. J Crit Care 31:96–100

    Article  PubMed  Google Scholar 

  16. De Backer D, Fagnoul D (2014) Intensive care ultrasound: VI. fluid responsiveness and shock assessment. Ann Am Thorac Soc 11:129–136

    Article  PubMed  Google Scholar 

  17. Feissel M, Michard F, Faller J‑P, Teboul J‑L (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–1837

    Article  PubMed  Google Scholar 

  18. Prekker ME, Scott NL, Hart D, Sprenkle MD, Leatherman JW (2013) Point-of-care ultrasound to estimate central venous pressure: a comparison of three techniques. Crit Care Med 41:833–841

    Article  PubMed  Google Scholar 

  19. Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme J‑L, Jardin F, Vieillard-Baron A (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30:1740–1746

    PubMed  Google Scholar 

  20. Marik P, Monnet X, Teboul J‑L (2011) Hemodynamic parameters to guide fluid therapy. Ann Intensive Care 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marik PE, Cavallazzi R (2013) Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 41:1774–1781

    Article  PubMed  Google Scholar 

  22. Mouncey PR, Osborn TM, Power GS et al (2015) Trial of early, goal-directed resuscitation for septic shock. New Engl J Med 372:1301–1311

    Article  CAS  PubMed  Google Scholar 

  23. The ARISE Investigators, ANZICS Clinical Trials Group (2014) Goal-directed resuscitation for patients with early septic shock. New Engl J Med 371:1496–1506

    Article  Google Scholar 

  24. The ProCESS Investigators (2014) A randomized trial of protocol-based care for early septic shock. New Engl J Med 370:1683–1693

    Article  PubMed Central  Google Scholar 

  25. Marik PE (1999) Pulmonary artery catheterization and esophageal doppler monitoring in the ICU. Chest 116:1085–1091

    Article  CAS  PubMed  Google Scholar 

  26. Janssens U, Werdan K (2006) Erforderliches Monitoring auf der Intensivstation. Herz Kardiovask Erkrank 31:749–760

    Google Scholar 

  27. Kumar A, Anel R, Bunnell E et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699

    Article  PubMed  Google Scholar 

  28. Marx G, Albers J, Bauer M (2014) S3 Leitlinie „Intravasale Volumentherapie beim Erwachsenen“ (2014)

  29. Janssens U (2006) Beurteilung des Volumenstatus bei septischen Patienten durch ZVD oder PAOP: Druck ist nicht gleich Volumen! Intensiv News 6:6

    Google Scholar 

  30. Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, Goetz AE (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480

    Article  PubMed  Google Scholar 

  31. Taylor AJ, Moore TM (1999) Capillary fluid exchange. Am J Physiol 277:S203–S210

    CAS  PubMed  Google Scholar 

  32. Dünser MW, Takala J, Brunauer A, Bakker J (2013) Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care 17:326–326

    Article  PubMed  PubMed Central  Google Scholar 

  33. Torgersen C, Schmittinger CA, Wagner S, Ulmer H, Takala J, Jakob SM, Dünser MW (2009) Hemodynamic variables and mortality in cardiogenic shock: a retrospective cohort study. Crit Care 13:R157–R157

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wo CC, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E (1993) Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med 21:218–223

    Article  CAS  PubMed  Google Scholar 

  35. De Backer D, Creteur J, Preiser J‑C, Dubois M‑J, Vincent J‑L (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  36. Lima A, Bommel J van, Jansen TC, Ince C, Bakker J (2009) Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care 13(Suppl 5):S13–S13

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y, Perel A (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989

    Article  CAS  PubMed  Google Scholar 

  38. Hofer CK, Senn A, Weibel L, Zollinger A (2008) Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit Care 12:R82

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hofer CK, Muller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A (2005) Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 128:848–854

    Article  PubMed  Google Scholar 

  40. Zhang Z, Lu B, Sheng X, Jin N (2011) Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis. J Anesth 25:904–916

    Article  PubMed  Google Scholar 

  41. Perner A, Faber T (2006) Stroke volume variation does not predict fluid responsiveness in patients with septic shock on pressure support ventilation. Acta Anaesthesiol Scand 50:1068–1073

    Article  CAS  PubMed  Google Scholar 

  42. Daihua Y, Wei C, Xude S, Linong Y, Changjun G, Hui Z (2012) The effect of body position changes on stroke volume variation in 66 mechanically ventilated patients with sepsis. J Crit Care 27:416

    Article  PubMed  Google Scholar 

  43. Kim SY, Song Y, Shim JK, Kwak YL (2013) Effect of pulse pressure on the predictability of stroke volume variation for fluid responsiveness in patients with coronary disease. J Crit Care 28:318.e1–318.e7

    Google Scholar 

  44. Kim HK, Pinsky MR (2008) Effect of tidal volume, sampling duration, and cardiac contractility on pulse pressure and stroke volume variation during positive-pressure ventilation. Crit Care Med 36:2858–2862

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wyler von Ballmoos M, Takala J, Roeck M et al (2010) Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Crit Care 14:R111

    Article  PubMed  PubMed Central  Google Scholar 

  46. Daudel F, Tuller D, Krahenbuhl S, Jakob SM, Takala J (2010) Pulse pressure variation and volume responsiveness during acutely increased pulmonary artery pressure: an experimental study. Crit Care 14:R122

    Article  PubMed  PubMed Central  Google Scholar 

  47. Monnet X, Teboul J‑L (2015) Passive leg raising: five rules, not a drop of fluid! Crit Care 19(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  48. Biais M, Vidil L, Sarrabay P, Cottenceau V, Revel P, Sztark F (2009) Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device. Crit Care 13:R195

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cavallaro F, Sandroni C, Marano C et al (2010) Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med 36:1475–1483

    Article  PubMed  Google Scholar 

  50. Mandeville JC, Colebourn CL (2012) Can transthoracic echocardiography be used to predict fluid responsiveness in the critically ill patient? A systematic review. Crit Care Res Pract 2012:1–9. doi:10.1155/2012/513480

    Article  Google Scholar 

  51. Grodin JL, Mullens W, Dupont M, Wu Y, Taylor DO, Starling RC, Tang WH (2015) Prognostic role of cardiac power index in ambulatory patients with advanced heart failure. Eur J Heart Fail. doi:10.1002/ejhf.268

    Google Scholar 

  52. Hall SG, Garcia J, Larson DF, Smith R (2012) Cardiac power index: staging heart failure for mechanical circulatory support. Perfusion 27:456–461

    Article  CAS  PubMed  Google Scholar 

  53. Popovic B, Fay R, Cravoisy-Popovic A, Levy B (2014) Cardiac power index, mean arterial pressure, and simplified acute physiology score II are strong predictors of survival and response to revascularization in cardiogenic shock. Shock 42:22–26

    Article  PubMed  Google Scholar 

  54. Uil CA den, Lagrand WK, Ent M van der, Jewbali LS, Cheng JM, Spronk PE, Simoons ML (2010) Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 31:3032–3039

    Article  Google Scholar 

  55. Torgersen C, Schmittinger CA, Wagner S, Ulmer H, Takala J, Jakob SM, Dunser MW (2009) Hemodynamic variables and mortality in cardiogenic shock: a retrospective cohort study. Crit Care 13:R157

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jung C, Kelm M (2015) Evaluation of the mikrocirculation in critically ill patients. Clin Hemorheol Microcirc 61(2):213–224. doi:10.3233/ch-151994

    Article  PubMed  Google Scholar 

  57. Jung C, Ferrari M, Rodiger C, Fritzenwanger M, Goebel B, Lauten A, Pfeifer R, Figulla HR (2009) Evaluation of the sublingual microcirculation in cardiogenic shock. Clin Hemorheol Microcirc 42:141–148

    PubMed  Google Scholar 

  58. Jung C, Fuernau G, Waha S de, Eitel I, Desch S, Schuler G, Figulla H, Thiele H (2015) Intraaortic balloon counterpulsation and microcirculation in cardiogenic shock complicating myocardial infarction: an IABP-SHOCK II substudy. Clin Res Cardiol 104:679–687

    Article  PubMed  Google Scholar 

  59. Saugel B, Trepte CJ, Heckel K, Wagner JY, Reuter DA (2015) Hemodynamic management of septic shock: is it time for “individualized goal-directed hemodynamic therapy” and for specifically targeting the microcirculation? Shock 43:522–529

    Article  CAS  PubMed  Google Scholar 

  60. Russ MA, Prondzinsky R, Carter JM et al (2009) Right ventricular function in myocardial infarction complicated by cardiogenic shock: Improvement with levosimendan. Crit Care Med 37:3017–3023

    Article  CAS  PubMed  Google Scholar 

  61. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  62. Vincent J‑L, De Backer D (2013) Circulatory Shock. New Engl J Med 369:1726–1734

    Article  CAS  PubMed  Google Scholar 

  63. Thiele H, Zeymer U, Neumann F‑J et al (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. New Engl J Med 367:1287–1296

    Article  CAS  PubMed  Google Scholar 

  64. Windecker S, Kolh P, Alfonso F et al (2014) 2014 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 35:2541–2619

    Article  PubMed  Google Scholar 

  65. Jones AE, Shapiro NI, Trzeciak S et al (2010) Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 303:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. New Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  67. Cecconi M, De Backer D, Antonelli M et al (2014) Consensus on circulatory shock and hemodynamic monitoring. Intensive Care Med 40:1795–1815

    Article  PubMed  PubMed Central  Google Scholar 

  68. McMurray JJV, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail 14:803–869

    Article  CAS  PubMed  Google Scholar 

  69. Trepte CC, Bachmann K, Stork J et al (2013) The impact of early goal-directed fluid management on survival in an experimental model of severe acute pancreatitis. Intensive Care Med 39:717–726

    Article  PubMed  Google Scholar 

  70. DIVI (2004) Empfehlung der DIVI zum innerklinischen Transport kritisch kranker, erwachsener Patienten. http://www.divi.de/images/Dokumente/Empfehlungen/Intensivtransport/2004_Empf_innerklinischerTransport.pdf. Zugegriffen: 30.05.2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Simonis.

Ethics declarations

Interessenkonflikt

Den Interessenkonflikt der Autoren finden Sie online auf der DGK-Homepage unter http://leitlinien.dgk.org/ bei der entsprechenden Publikation.

Additional information

M. Kelm für die Kommission für Klinische Kardiologie der DGK Alle Autoren sind Mitglieder der Arbeitsgruppe 3 – kardiovaskuläre Intensiv- und Notfallmedizin der Deutschen Gesellschaft für Kardiologie. G. Simonis war Sprecher der AG 2014–2016. H. Thiele ist aktueller Sprecher der AG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssens, U., Jung, C., Hennersdorf, M. et al. Empfehlungen zum hämodynamischen Monitoring in der internistischen Intensivmedizin. Kardiologe 10, 149–169 (2016). https://doi.org/10.1007/s12181-016-0060-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-016-0060-x

Schlüsselwörter

Keywords

Navigation