Skip to main content

Advertisement

Log in

The Prognostic Value of 48-h Continuous EEG During Therapeutic Hypothermia After Cardiac Arrest

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to evaluate the prognostic value of continuous electroencephalogram (cEEG) during the first 48 h following cardiac arrest (CA) in patients treated with targeted temperature management (TTM).

Methods

We reviewed data from 92 comatose post-CA patients over a 6 year-period; cEEG recordings were performed during TTM and restoration of normothermia. EEG findings were divided into four time-periods: 0–8, 8–16, 16–24, and 24–48 h after CA. Background EEG findings were defined as moderate encephalopathy (diffuse slowing with reactivity/variability), severe encephalopathy (diffuse slowing without reactivity/variability), burst suppression or suppression, and dichotomized as malignant (suppression/burst suppression/severe encephalopathy) or benign (moderate encephalopathy). Epileptiform activity was defined as the presence of seizures, sporadic epileptiform discharges, or periodic discharges. Neurological outcome was assessed at 3 months using the cerebral performance categories (CPC) score (good outcome: CPC 1–2).

Results

26/92 (28 %) patients had a good outcome. Malignant patterns were associated with a poor outcome at all time-points, with a high positive predictive value (94–97 %) but a poor negative predictive value (44–56 %). Epileptiform activity did not influence the prognostic value of EEG patterns. All patients with moderate encephalopathy and seizures or generalized periodic discharges had a poor outcome.

Conclusions

cEEG can identify patients with poor outcome from the first hours following CA, with limited predictive value for good outcome. Epileptiform activity did not improve the prognostic accuracy of EEG, but seizures and generalized periodic discharges were associated with poor outcome even when developing on a benign EEG pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CA:

Cardiac arrest

cEEG:

Continuous electroencephalogram

CPR:

Cardiopulmonary resuscitation

CPC:

Cerebral performance category

ICU:

Intensive care unit

IHCA:

In-hospital cardiac arrest

NPV:

Negative predictive value

NT:

Normothermia

OHCA:

Out-of-hospital cardiac arrest

PPV:

Positive predictive value

ROSC:

Restoration of spontaneous cardiac activity

TTM:

Targeted temperature management

VF:

Ventricular fibrillation

VT:

Pulseless ventricular tachycardia

References

  1. Sans S, Kesteloot H, Kromhout D. The burden of cardiovascular diseases mortality in Europe. Task Force of the European Society of Cardiology on Cardiovascular Mortality and Morbidity Statistics in Europe. Eur Heart J. 1997;18:1231–48.

    Article  Google Scholar 

  2. Peberdy MA, Callaway CW, Neumar RW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S768–86.

    Article  PubMed  Google Scholar 

  3. Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.

    Article  Google Scholar 

  4. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.

    Article  PubMed  Google Scholar 

  5. Samaniego EA, Mlynash M, Caulfield AF, Eyngorn I, Wijman CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15:113–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Friberg H, Rundgren M, Westhall E, Nielsen N, Cronberg T. Continuous evaluation of neurological prognosis after cardiac arrest. Acta Anaesthesiol Scand. 2013;57:6–15.

    Article  CAS  PubMed  Google Scholar 

  7. Rittenberger JC, Popescu A, Brenner RP, Guyette FX, Callaway CW. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocrit Care. 2012;16:114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rossetti AO, Logroscino G, Liaudet L, et al. Status epilepticus: an independent outcome predictor after cerebral anoxia. Neurology. 2007;69:255–60.

    Article  CAS  PubMed  Google Scholar 

  9. Bouwes A, van Poppelen D, Koelman JH, et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol. 2012;12:63.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rossetti AO, Oddo M, Liaudet L, Kaplan PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72:744–9.

    Article  PubMed  Google Scholar 

  11. Rossetti AO, Urbano LA, Delodder F, Kaplan PW, Oddo M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14(5):R173.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rundgren M, Westhall E, Cronberg T, Rosen I, Friberg H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38:1838–44.

    Article  PubMed  Google Scholar 

  13. Cloostermans MC, van Meulen FB, Eertman CJ, Hom HW, van Putten MJ. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40:2867–75.

    Article  PubMed  Google Scholar 

  14. Fugate JE, Wijdicks EF, Mandrekar J, et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol. 2010;68:907–14.

    Article  PubMed  Google Scholar 

  15. Synek VM. Revised EEG coma scale in diffuse acute head injuries in adults. Clin Exp Neurol. 1990;27:99–111.

    CAS  PubMed  Google Scholar 

  16. Synek VM. Value of a revised EEG coma scale for prognosis after cerebral anoxia and diffuse head injury. Clin Electroencephalogr. 1990;21:25–30.

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez V, Sierra-Marcos A, Oddo A, Rossetti AO. Yield of intermittent versus continuous EEG in comatose survivors of cardiac arrest treated with hypothermia. Crit Care. 2013;17(5):R190.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sadaka F, Doerr D, Hindia J, Lee K, Logan W. Continuous electroencephalogram in comatose postcardiac arrest syndrome patients treated with therapeutic hypothermia: outcome prediction study. J Intensive Care Med. 2014;. doi:10.1177/0885066613517214.

    Google Scholar 

  19. Young GB, Jordan KG, Doig GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996;47(1):83–9.

    Article  CAS  PubMed  Google Scholar 

  20. Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.

    PubMed  Google Scholar 

  21. Tjepkema-Cloostermans MC, Hofmeijer J, Trof RJ, Blans MJ, Beishuizen A, van Putten MJ. Electroencephalogram predicts outcome in patients with postanoxic coma during mild therapeutic hypothermia. Crit Care Med. 2015;43(1):159–67.

    Article  PubMed  Google Scholar 

  22. Amorim E, Rittenberger JC, Baldwin ME, Callaway CW, Popescu A, Post Cardiac Arrest Service. Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge. Resuscitation. 2015;90:127–32.

    Article  PubMed  Google Scholar 

  23. Westhall E, Rosén I, Rossetti AO, et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin Neurophysiol. 2015;. doi:10.1016/j.clinph.2015.03.017.

    PubMed  Google Scholar 

  24. Tsetsou S, Oddo M, Rossetti AO. Clinical outcome after a reactive hypothermic EEG following cardiac arrest. Neurocrit Care. 2013;19:283–6.

    Article  PubMed  Google Scholar 

  25. Oddo M, Rossetti AO. Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia. Crit Care Med. 2014;42:1340–7.

    Article  PubMed  Google Scholar 

  26. Mani R, Schmitt SE, Mazer M, Putt ME, Gaieski DF. The frequency and timing of epileptiform activity on continuous electroencephalogram in comatose post-cardiac arrest syndrome patients treated with therapeutic hypothermia. Resuscitation. 2012;83:840–7.

    Article  PubMed  Google Scholar 

  27. Jorgensen EO, Malchow-Moller A. Natural history of global and critical brain ischaemia. Part III: cerebral prognostic signs after cardiopulmonary resuscitation. Cerebral recovery course and rate during the first year after global and critical ischaemia monitored and predicted by EEG and neurological signs. Resuscitation. 1981;9:175–88.

    Article  Google Scholar 

  28. Rundgren M, Rosen I, Friberg H. Amplitude-integrated EEG (aEEG) predicts outcome after cardiac arrest and induced hypothermia. Intensive Care Med. 2006;32:836–42.

    Article  PubMed  Google Scholar 

  29. Crepeau AZ, Rabinstein AA, Fugate JE, et al. Continuous EEG in therapeutic hypothermia after cardiac arrest Prognostic and clinical value. Neurology. 2013;80:339–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Legros.

Ethics declarations

Conflict of interest

None to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamartine Monteiro, M., Taccone, F.S., Depondt, C. et al. The Prognostic Value of 48-h Continuous EEG During Therapeutic Hypothermia After Cardiac Arrest. Neurocrit Care 24, 153–162 (2016). https://doi.org/10.1007/s12028-015-0215-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-015-0215-9

Keywords

Navigation