Skip to main content

Advertisement

Log in

Impact of Perihemorrhagic Edema on Short-Term Outcome After Intracerebral Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Intracerebral hemorrhage (ICH) is a devastating disease with ICH volume being the main predictor of poor outcome. The prognostic role of perihemorrhagic edema (PHE) is still unclear; however, available data are mainly derived from analyses during the first days after symptom onset. As PHE growth may continue up to 14 days after ICH, we evaluated PHE over a longer period of time and investigated its impact on short-term clinical outcome.

Methods

In this monocentric retrospective cohort study, patients with spontaneous supratentorial ICH were identified from our institutional data base. Different time points of CT scans were merged to time clusters for better comparison (day 1, 2–3, 4–6, 7–9, 10–12). Absolute volumes of ICH and PHE were obtained using a validated semiautomatic volumetric algorithm. Clinical outcome at discharge was assessed using the modified Rankin Scale (0–3 = favorable, 4–6 = poor).

Results

220 patients (83 with favorable, 137 with poor outcome) were included in the final analysis. Mean ICH volume on admission was 22.8 [standard deviation (SD) 24.6] cm3. Mean absolute PHE volume on admission was 22.5 (SD 20.8) cm3 and increased to a mean peak volume of 38.1 (SD 31.4) cm3 during 6.7 (SD 4.1) days on average. Besides GCS on admission, functional status before ICH, peak hematoma volume, lobar localization and fever burden, and high peak PHE volume predicted poor outcome at discharge [OR 0.977 (95 % CI 0.957–0.998)] in the multivariable analysis.

Conclusions

PHE may have a negative impact on short-term functional outcome after ICH and therefore represent a possible treatment target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373:1632–44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30:1167–73.

    Article  CAS  PubMed  Google Scholar 

  3. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.

    Article  PubMed  Google Scholar 

  4. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24:987–93.

    Article  CAS  PubMed  Google Scholar 

  5. Davis SM, Broderick J, Hennerici M, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66:1175–81.

    Article  CAS  PubMed  Google Scholar 

  6. Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.

    Article  CAS  PubMed  Google Scholar 

  7. Arima H, Wang JG, Huang Y, et al. Significance of perihematomal edema in acute intracerebral hemorrhage: the INTERACT trial. Neurology. 2009;73:1963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang J, Arima H, Wu G, et al. Prognostic significance of perihematomal edema in acute intracerebral hemorrhage: pooled analysis from the intensive blood pressure reduction in acute cerebral hemorrhage trial studies. Stroke. 2015;46:1009–13.

    Article  PubMed  Google Scholar 

  9. Venkatasubramanian C, Mlynash M, Finley-Caulfield A, et al. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011;42:73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Appelboom G, Bruce SS, Hickman ZL, et al. Volume-dependent effect of perihaematomal oedema on outcome for spontaneous intracerebral haemorrhages. J Neurol Neurosurg Psychiatry. 2013;84:488–93.

    Article  PubMed  Google Scholar 

  11. Staykov D, Wagner I, Volbers B, et al. Natural course of perihemorrhagic edema after intracerebral hemorrhage. Stroke. 2011;42:2625–9.

    Article  PubMed  Google Scholar 

  12. Gebel JM Jr, Jauch EC, Brott TG, et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002;33:2636–41.

    Article  PubMed  Google Scholar 

  13. Palm F, Henschke N, Wolf J, et al. Intracerebral haemorrhage in a population-based stroke registry (LuSSt): incidence, aetiology, functional outcome and mortality. J Neurol. 2013;260:2541–50.

    Article  CAS  PubMed  Google Scholar 

  14. Schwarz S, Hafner K, Aschoff A, Schwab S. Incidence and prognostic significance of fever following intracerebral hemorrhage. Neurology. 2000;54:354–61.

    Article  CAS  PubMed  Google Scholar 

  15. Sun W, Pan W, Kranz PG, et al. Predictors of late neurological deterioration after spontaneous intracerebral hemorrhage. Neurocrit Care. 2013;19:299–305.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sykora M, Steinmacher S, Steiner T, Poli S, Diedler J. Association of intracranial pressure with outcome in comatose patients with intracerebral hemorrhage. J Neurol Sci. 2014;342:141–5.

    Article  PubMed  Google Scholar 

  17. Volbers B, Staykov D, Wagner I, et al. Semi-automatic volumetric assessment of perihemorrhagic edema with computed tomography. Eur J Neurol. 2011;18:1323–8.

    Article  PubMed  Google Scholar 

  18. Lees KR, Bath PM, Schellinger PD, et al. Contemporary outcome measures in acute stroke research: choice of primary outcome measure. Stroke. 2012;43:1163–70.

    Article  PubMed  Google Scholar 

  19. Ali M, Fulton R, Quinn T, Brady M, Collaboration V. How well do standard stroke outcome measures reflect quality of life? A retrospective analysis of clinical trial data. Stroke. 2013;44:3161–5.

    Article  PubMed  Google Scholar 

  20. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. Hoboken: Wiley; 2013.

    Book  Google Scholar 

  21. Zazulia AR, Diringer MN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab. 2001;21:804–10.

    Article  CAS  PubMed  Google Scholar 

  22. McCourt R, Gould B, Gioia L, et al. Cerebral perfusion and blood pressure do not affect perihematoma edema growth in acute intracerebral hemorrhage. Stroke. 2014;45:1292–8.

    Article  PubMed  Google Scholar 

  23. Mayer SA, Lignelli A, Fink ME, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage: a SPECT study. Stroke. 1998;29:1791–8.

    Article  CAS  PubMed  Google Scholar 

  24. Staykov D, Wagner I, Volbers B, Doerfler A, Schwab S, Kollmar R. Mild prolonged hypothermia for large intracerebral hemorrhage. Neurocrit Care. 2013;18:178–83.

    Article  PubMed  Google Scholar 

  25. Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke. 2014;45:290–2.

    Article  CAS  PubMed  Google Scholar 

  26. Mould WA, Carhuapoma JR, Muschelli J, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu Y, Hao J, Zhang N, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71:1092–101.

    Article  PubMed  Google Scholar 

  28. Urday S, Beslow LA, Goldstein DW, et al. Measurement of perihematomal edema in intracerebral hemorrhage. Stroke. 2015;46:1116–9.

    Article  PubMed  Google Scholar 

  29. Chan E, Anderson CS, Wang X, et al. Significance of intraventricular hemorrhage in acute intracerebral hemorrhage: intensive blood pressure reduction in acute cerebral hemorrhage trial results. Stroke. 2015. doi:10.1161/STROKEAHA.114.008470.

    Google Scholar 

  30. Mustanoja S, Satopää J, Meretoja A, et al. Extent of secondary intraventricular hemorrhage is an independent predictor of outcomes in intracerebral hemorrhage: data from the Helsinki ICH Study. Int J Stroke. 2015;10:576–81.

    Article  PubMed  Google Scholar 

  31. Morgan TC, Dawson J, Spengler D, et al. The modified graeb score: an enhanced tool for intraventricular hemorrhage measurement and prediction of functional outcome. Stroke. 2013;44:635–41.

    Article  PubMed  Google Scholar 

  32. Khan NR, Tsivgoulis G, Lee SL, et al. Fibrinolysis for intraventricular hemorrhage: an updated meta-analysis and systematic review of the literature. Stroke. 2014;45:2662–9.

    Article  PubMed  Google Scholar 

  33. Staykov D, Bardutzky J, Huttner HB, Schwab S. Intraventricular fibrinolysis for intracerebral hemorrhage with severe ventricular involvement. Neurocrit Care. 2011;15:194–209.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Volbers.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volbers, B., Willfarth, W., Kuramatsu, J.B. et al. Impact of Perihemorrhagic Edema on Short-Term Outcome After Intracerebral Hemorrhage. Neurocrit Care 24, 404–412 (2016). https://doi.org/10.1007/s12028-015-0185-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-015-0185-y

Keywords

Navigation