Skip to main content
Log in

Organic Gallium Treatment Improves Osteoporotic Fracture Healing Through Affecting the OPG/RANKL Ratio and Expression of Serum Inflammatory Cytokines in Ovariectomized Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the impact of organic gallium (OG) on osteoporotic fracture healing in ovariectomized female Sprague-Dawley rats, as well as study the mechanisms of OG on osteoporotic fracture healing. Forty-five female Sprague-Dawley rats were divided into three groups: sham operation group (Sxas control group), ovariectomized group (Ovx), and Ovx treated with OG group (Ovx + OG). Rat femoral fractures were studied using a standardized fracture-healing model utilizing bone fixation with an intramedullary pin. Six weeks later, analyses of micro-CT, histomorphometric, RNA extraction, RT-qPCR, and serum were performed following sacrifice of all mice. In comparison with Ovx group, OG can significantly increase bone volume (BV), tissue volume (TV), BV/TV radio, bone strength, callus bony area, and as similar to BMP-2 expression. OG treatment elevated OPG messenger RNA (mRNA) and inhibited RANKL mRNA, and showed an effect on OPG/RANKL ratio. OG treatment can inhibit the expression of TNF-α and IL-6. In conclusion, current study results indicate that organic OG can positively affect the OPG/RANKL ratio and inhibit the expression of serum inflammatory cytokines; thus, it can improve osteoporotic fracture healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marcus R (1996) Clinical review 76: the nature of osteoporosis. J Clin Endocrinol Metab 81:1–5

    CAS  PubMed  Google Scholar 

  2. Cimaz R, Biggioggero M (2001) Osteoporosis. Curr Rheumatol Rep 3:365–370

    CAS  PubMed  Google Scholar 

  3. Frost HM, Jee WS (1992) On the rat model of human osteopenias and osteoporoses. Bone and mineral 18:227–236

    CAS  PubMed  Google Scholar 

  4. Lau EM, Cooper C (1996) The epidemiology of osteoporosis. The oriental perspective in a world context. Clinical orthopaedics and related research 65–74

    Google Scholar 

  5. Beattie K, Adachi J, Ioannidis G, Papaioannou A, Leslie WD, Grewal R, MacDermid J, Hodsman AB (2015) Estimating osteoporotic fracture risk following a wrist fracture: a tale of two systems. Arch Osteoporos 10:13

    PubMed  PubMed Central  Google Scholar 

  6. Vitali C, Gussoni G, Bianchi G et al (2015) High prevalence of fragility vertebral fractures in patients hospitalised in Internal Medicine Units. Results of the POINT (Prevalence of Osteoporosis in INTernal medicine) study. Bone 74:114–120

    PubMed  Google Scholar 

  7. Bliuc D, Center JR (2016) Determinants of mortality risk following osteoporotic fractures. Curr Opin Rheumatol 28:413–419

    PubMed  Google Scholar 

  8. Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J, Maastricht S, Swain M, Mason RS, Murrell GA, Diwan AD, Diamond T (2001) Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 28:80–86

    CAS  PubMed  Google Scholar 

  9. Thomas-John M, Codd MB, Manne S, Watts NB, Mongey AB (2009) Risk factors for the development of osteoporosis and osteoporotic fractures among older men. J Rheumatol 36:1947–1952

    PubMed  Google Scholar 

  10. Lee JH, Cho SK, Han M, Lee S, Kim JY, Ryu JA, Choi YY, Bae SC, Sung YK (2014) Validity and role of vertebral fracture assessment in detecting prevalent vertebral fracture in patients with rheumatoid arthritis. Joint, bone, spine : revue du rhumatisme 81:149–153

    Google Scholar 

  11. Murphy CM, Schindeler A, Cantrill LC, Mikulec K, Peacock L, Little DG (2015) PTH(1-34) treatment increases bisphosphonate turnover in fracture repair in rats. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 30:1022–1029

    CAS  Google Scholar 

  12. Boytsov N, Zhang X, Sugihara T, Taylor K, Swindle R (2015) Osteoporotic fractures and associated hospitalizations among patients treated with teriparatide compared to a matched cohort of patients not treated with teriparatide. Curr Med Res Opin 31:1665–1675

    CAS  PubMed  Google Scholar 

  13. Hao Y, Wang X, Wang L, Lu Y, Mao Z, Ge S, Dai K (2015) Zoledronic acid suppresses callus remodeling but enhances callus strength in an osteoporotic rat model of fracture healing. Bone 81:702–711

    CAS  PubMed  Google Scholar 

  14. Maier GS, Seeger JB, Horas K, Roth KE, Kurth AA, Maus U (2015) The prevalence of vitamin D deficiency in patients with vertebral fragility fractures. Bone Joint J 97-B:89–93

    CAS  PubMed  Google Scholar 

  15. Cauley JA (2015) Estrogen and bone health in men and women. Steroids 99:11–15

    CAS  PubMed  Google Scholar 

  16. Casper ES, Stanton GF, Sordillo PP, Parente R, Michaelson RA, Vinceguerra V (1985) Phase II trial of gallium nitrate in patients with advanced malignant melanoma. Cancer treatment reports 69:1019–1020

    CAS  PubMed  Google Scholar 

  17. Straus DJ (2003) Gallium nitrate in the treatment of lymphoma. Semin Oncol 30:25–33

    CAS  PubMed  Google Scholar 

  18. Collery P, Keppler B, Madoulet C, Desoize B (2002) Gallium in cancer treatment. Crit Rev Oncol Hematol 42:283–296

    PubMed  Google Scholar 

  19. Donnelly R, Bockman RS, Doty SB, Boskey AL (1991) Bone particles from gallium-treated rats are resistant to resorption in vivo. Bone and mineral 12:167–179

    CAS  PubMed  Google Scholar 

  20. Warrell RP, Jr., Bockman RS (1989) Gallium in the treatment of hypercalcemia and bone metastasis. Important Adv Oncol 205–220

  21. Hughes S, Peel-White AL, Peterson CK (1992) Paget’s disease of bone—current thinking and management. J Manip Physiol Ther 15:242–249

    CAS  Google Scholar 

  22. Warrell RP Jr, Bosco B, Weinerman S, Levine B, Lane J, Bockman RS (1990) Gallium nitrate for advanced Paget disease of bone: effectiveness and dose-response analysis. Ann Intern Med 113:847–851

    PubMed  Google Scholar 

  23. Chitambar CR (2010) Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 7:2337–2361

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernstein LR, Tanner T, Godfrey C, Noll B (2000) Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability. Metal-Based Drugs 7:33–47

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Han C, Yuan J, Wang Y, Li L (2006) Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements 20:191–196

    CAS  Google Scholar 

  26. Ma Z, Fu Q (2010) Therapeutic effect of organic gallium on ovariectomized osteopenic rats by decreased serum minerals and increased bone mineral content. Biol Trace Elem Res 133:342–349

    CAS  PubMed  Google Scholar 

  27. Ma Z, Fu Q (2010) Comparison of the therapeutic effects of yeast-incorporated gallium with those of inorganic gallium on ovariectomized osteopenic rats. Biol Trace Elem Res 134:280–287

    CAS  PubMed  Google Scholar 

  28. Pei Y, Fu Q (2011) Yeast-incorporated gallium promotes fracture healing by increasing callus bony area and improving trabecular microstructure on ovariectomized osteopenic rats. Biol Trace Elem Res 141:207–215

    CAS  PubMed  Google Scholar 

  29. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone and mineral 15:175–191

    CAS  PubMed  Google Scholar 

  30. Stenstrom M, Olander B, Carlsson CA, Carlsson GA, Lehto-Axtelius D, Hakanson R (1998) The use of computed microtomography to monitor morphological changes in small animals. Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine 49:565–570

    CAS  Google Scholar 

  31. Lehnerdt G, Unkel C, Metz KA, Jahnke K, Neumann A (2008) Immunohistochemical evidence of BMP-2, -4 and -7 activity in otospongiosis. Acta Otolaryngol 128:13–17

    CAS  PubMed  Google Scholar 

  32. Shanmugarajan S, Tsuruga E, Swoboda KJ, Maria BL, Ries WL, Reddy SV (2009) Bone loss in survival motor neuron (Smn(−/−) SMN2) genetic mouse model of spinal muscular atrophy. J Pathol 219:52–60

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  34. Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    CAS  PubMed  Google Scholar 

  35. Filvaroff E, Derynck R (1998) Bone remodelling: a signalling system for osteoclast regulation. Current biology : CB 8:R679–R682

    CAS  PubMed  Google Scholar 

  36. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381

    CAS  PubMed  Google Scholar 

  37. Verron E, Masson M, Khoshniat S et al (2010) Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts. Br J Pharmacol 159:1681–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Maquer G, Musy SN, Wandel J, Gross T, Zysset PK (2015) Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J Bone Miner Res: Official J Am Soc Bone Miner Res 30:1000–1008

    Google Scholar 

  39. Rath C, Baum T, Monetti R et al (2013) Scaling relations between trabecular bone volume fraction and microstructure at different skeletal sites. Bone 57:377–383

    PubMed  Google Scholar 

  40. Wozney JM (1989) Bone morphogenetic proteins. Prog Growth Factor Res 1:267–280

    CAS  PubMed  Google Scholar 

  41. Hall TJ, Chambers TJ (1990) Gallium inhibits bone resorption by a direct effect on osteoclasts. Bone Miner 8:211–216

    CAS  PubMed  Google Scholar 

  42. Verron E, Loubat A, Carle GF, Vignes-Colombeix C, Strazic I, Guicheux J, Rochet N, Bouler JM, Scimeca JC (2012) Molecular effects of gallium on osteoclastic differentiation of mouse and human monocytes. Biochem Pharmacol 83:671–679

    CAS  PubMed  Google Scholar 

  43. Strazic-Geljic I, Guberovic I, Didak B, Schmid-Antomarchi H, Schmid-Alliana A, Boukhechba F, Bouler JM, Scimeca JC, Verron E (2016) Gallium, a promising candidate to disrupt the vicious cycle driving osteolytic metastases. Biochem Pharmacol 116:11–21

    CAS  PubMed  Google Scholar 

  44. Stern LS, Matkovic V, Weisbrode SE, Apseloff G, Shepard DR, Mays DC, Gerber N (1994) The effects of gallium nitrate on osteopenia induced by ovariectomy and a low-calcium diet in rats. Bone and mineral 25:59–69

    CAS  PubMed  Google Scholar 

  45. Jenis LG, Waud CE, Stein GS, Lian JB, Baran DT (1993) Effect of gallium nitrate in vitro and in normal rats. J Cell Biochem 52:330–336

    CAS  PubMed  Google Scholar 

  46. Udagawa N (2002) Mechanisms involved in bone resorption. Biogerontology 3:79–83

    CAS  PubMed  Google Scholar 

  47. Udagawa N, Takahashi N, Yasuda H et al (2000) Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141:3478–3484

    CAS  PubMed  Google Scholar 

  48. Aubin JE, Bonnelye E (2000) Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 11:905–913

    CAS  Google Scholar 

  49. Hofbauer LC, Kuhne CA, Viereck V (2004) The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact 4:268–275

    CAS  PubMed  Google Scholar 

  50. Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 83:170–179

    CAS  PubMed  Google Scholar 

  51. Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54:158–168

    CAS  PubMed  Google Scholar 

  52. Inanir A, Ozoran K, Tutkak H, Mermerci B (2004) The effects of calcitriol therapy on serum interleukin-1, interleukin-6 and tumour necrosis factor-alpha concentrations in post-menopausal patients with osteoporosis. J Int Med Res 32:570–582

    CAS  PubMed  Google Scholar 

  53. Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 15:49–60

    PubMed  Google Scholar 

  54. Choi JH, Lee JH, Roh KH et al (2014) Gallium nitrate ameliorates type II collagen-induced arthritis in mice. Int Immunopharmacol 20:269–275

    PubMed  Google Scholar 

  55. Makkonen N, Hirvonen MR, Savolainen K, Lapinjoki S, Monkkonen J (1995) The effect of free gallium and gallium in liposomes on cytokine and nitric oxide secretion from macrophage-like cells in vitro. Inflamm Res 44:523–528

    CAS  PubMed  Google Scholar 

  56. Merryman JI, Capen CC, Rosol TJ (1994) Effects of gallium nitrate in nude mice bearing a canine adenocarcinoma (CAC-8) model of humoral hypercalcemia of malignancy. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 9:725–732

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 81070688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Fu.

Ethics declarations

Experimental protocols were reviewed and approved by Chinese Legislation for animal usage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., He, M., Wang, G. et al. Organic Gallium Treatment Improves Osteoporotic Fracture Healing Through Affecting the OPG/RANKL Ratio and Expression of Serum Inflammatory Cytokines in Ovariectomized Rats. Biol Trace Elem Res 183, 270–279 (2018). https://doi.org/10.1007/s12011-017-1123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1123-y

Keywords

Navigation