Skip to main content
Log in

Non-pressure-related effects of dietary sodium

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

After the demonstration of a positive correlation between sodium intake and arterial pressure in large population studies, the effect of short-term reduction in sodium intake demonstrated the efficacy of this nonpharmacological therapy. In addition, a positive relation between urinary sodium (the most reliable estimate of salt intake) and left ventricular hypertrophy was found; and in recent years it was shown that cardiovascular morbidity clearly progressed with increasing sodium intake, despite one contradictory study. The role of non-pressure-related effects of dietary sodium is discussed in order to bring more arguments for a largescale attempt to reduce sodium intake by 30% to 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Law MR, Frost CD, Wald NJ: By how much does dietary salt reduction lower blood pressure? I. Analysis of observational data among populations. BMJ 1991, 302:811–815.

    Article  PubMed  CAS  Google Scholar 

  2. Sacks FM, Svetkey LP, Vollmer WM, et al., and the DASH-Sodium Collaborative Research Group: Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH—Sodium Collaborative Research Group. N Engl J Med 2001, 344:3–10.

    Article  PubMed  CAS  Google Scholar 

  3. Hooper L, Bartlett C, Smith GD, Ebrahim S: Systematic review of long term effects of advice to reduce dietary salt in adults. BMJ 2002, 325:628–637.

    Article  PubMed  Google Scholar 

  4. du Cailar G, Ribstein J, Daures JP, Mimran A: Sodium and left ventricular mass in untreated hypertensive and normotensive subjects. Am J Physiol 1992, 263:H177–H181.

    PubMed  Google Scholar 

  5. Schmieder RE, Messerli FH, Garavaglia GE, Nunez BS: Salt intake as a determinant of cardiac involvement in essential hypertension. Circulation 1988, 78:951–956.

    PubMed  CAS  Google Scholar 

  6. Luft FC, Fineberg NS, Sloan RS: Estimating dietary sodium intake in individuals receiving a randomly fluctuating intake. Hypertension 1982, 4:805–808.

    PubMed  CAS  Google Scholar 

  7. du Cailar G, Ribstein J, Mimran A: Dietary sodium and target organ damage in essential hypertension. Am J Hypertens 2002, 15:222–229.

    Article  PubMed  Google Scholar 

  8. Swaye PS, Gifford RW, Berretoni JN: Dietary salt and hypertension. Am J Cardiology 1972, 29:33–38.

    Article  CAS  Google Scholar 

  9. Levy D, Garrison RJ, Savage DD, et al.: Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990, 322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  10. Casale PN, Devereux RB, Milner M, et al.: Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med 1986, 105:173–178.

    PubMed  CAS  Google Scholar 

  11. Hillege HL, Fidler V, Diercks GF, et al.: and the Prevention of Renal and Vascular End Stage Disease (PREVEND) Study Group: Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002, 106:1777–1782.

    Article  PubMed  CAS  Google Scholar 

  12. Olsen MH, Wachtell K, Ibsen H, and the LIFE Study Investigators: Reductions in albuminuria and in electrocardiographic left ventricular hypertrophy independently improve prognosis in hypertension: the LIFE study. J Hypertens 2006, 24:775–781.

    Article  PubMed  CAS  Google Scholar 

  13. Klausen KP, Scharling H, Jensen G, Jensen JS: New definition of microalbuminuria in hypertensive subjects: association with incident coronary heart disease and death. Hypertension 2005, 46:33–37.

    Article  PubMed  CAS  Google Scholar 

  14. Wang TJ, Evans JC, Meigs JB, et al.: Low-grade albuminuria and the risks of hypertension and blood pressure progression. Circulation 2005, 111:1370–1376.

    Article  PubMed  CAS  Google Scholar 

  15. Liebson PR, Grandits GA, Prineas RJ, et al.: Echocardiographic correlates of left ventricular structure among 844 mildly hypertensive men and women in the treatment of mild hypertension study (TOMHS). Circulation 1993, 87:476–486.

    PubMed  CAS  Google Scholar 

  16. Dhingra R, Pencina MJ, Benjamin EJ, et al.: Cross-sectional relations of urinary sodium excretion to cardiac structure and hypertrophy. The Framingham Heart Study. Am J Hypertens 2004, 17:891–896.

    PubMed  CAS  Google Scholar 

  17. Safar ME: Pulse pressure, arterial stiffness, and cardiovascular risk. Curr Opin Cardiol 2000, 15:258–263.

    Article  PubMed  CAS  Google Scholar 

  18. Franklin SS, Khan SA, Wong ND, et al.: Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham heart study. Circulation 1999, 100:354–360.

    PubMed  CAS  Google Scholar 

  19. du Cailar G, Mimran A, Fesler P, et al.: Dietary sodium and pulse pressure in normotensive and essential hypertensive subjects. J Hypertens 2004, 22:697–703.

    Article  PubMed  Google Scholar 

  20. Avolio AP, Fa-Quan D, Wei-Qiang L, et al.: Effect of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation 1985, 71:202–210.

    PubMed  CAS  Google Scholar 

  21. Avolio AP, Clyde KM, Beard TC, et al.: Improved arterial distensibility in normotensive subjects on a low salt diet. Arteriosclerosis 1986, 6:166–169.

    PubMed  CAS  Google Scholar 

  22. Morito A, Uzu T, Fujii T, et al.: Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 1997, 350:1734–1737.

    Article  Google Scholar 

  23. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M: Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 2001, 37(Part 2):429–432.

    PubMed  CAS  Google Scholar 

  24. Alderman MH, Madhavan S, Cohen H, et al.: Low urinary sodium is associated with greater risk of myocardial infarction among treated hypertensive men. Hypertension 1995, 25:1144–1152.

    PubMed  CAS  Google Scholar 

  25. He J, Ogden LG, Vupputuri S, et al.: Dietary sodium intake and subsequent risk of cardiovascular disease in overweight adults. JAMA 1999, 282:2027–2034.

    Article  PubMed  CAS  Google Scholar 

  26. Tuomilehto J, Jousilahti P, Rastenyte D, et al.: Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study. Lancet 2001, 357:848–851.

    Article  PubMed  CAS  Google Scholar 

  27. Jula AM, Karanko KM: Effects on left ventricular hypertrophy of long-term nonpharmacological treatment with sodium restriction in mild-to-moderate essential hypertension. Circulation 1994, 89:1023–1031.

    PubMed  CAS  Google Scholar 

  28. Benetos A, Yang-Yan X, Cuche JL, et al.: Arterial effects of salt restriction in hypertensive patients. A 9-week, randomized, double-blind, crossover study. J Hypertens 1992, 10:355–360.

    Article  PubMed  CAS  Google Scholar 

  29. Gates PE, Tanaka H, Hiatt WR, Seals DR: Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension 2004, 44:35–41.

    Article  PubMed  CAS  Google Scholar 

  30. Seals DR, Tanaka H, Clevenger CM, et al.: Blood pressure reductions with exercise and sodium restriction in postmenopausal women with elevated systolic pressure: role of arterial stiffness. J Am Coll Cardiol 2001, 38:506–513.

    Article  PubMed  CAS  Google Scholar 

  31. Appel LJ, Espeland MA, Easter L, et al.: Effects of reduced sodium intake on hypertension control in older individuals: results from the Trial of Nonpharmacologic Interventions in the Elderly (TONE). Arch Intern Med 2001, 161:685–693.

    Article  PubMed  CAS  Google Scholar 

  32. Chang HY, Hu YW, Yue CS, et al.: Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am J Clin Nutr 2006, 83:1289–1296.

    PubMed  CAS  Google Scholar 

  33. Sen S, Young DR: Role of sodium in modulation of myocardial hypertrophy in renal hypertensive rats. Hypertension 1986, 8:918–924.

    PubMed  CAS  Google Scholar 

  34. Rugale C, Delbosc S, Cristol JP, et al.: Sodium restriction prevents cardiac hypertrophy and oxidative stress in ANG II hypertension. Am J Physiol Heart 2003, 284:H1744–H1750.

    CAS  Google Scholar 

  35. Leenen FHH, Yuan B: Dietary-sodium-induced cardiac remodeling in spontaneously hypertensive rats versus Wistar-Kyoto rat. J Hypertens 1998, 16:885–892.

    Article  PubMed  CAS  Google Scholar 

  36. Takeda Y, Yoneda T, Demura M, et al.: Sodium-induced cardiac aldosterone synthesis causes cardiac hypertrophy. Endocrinology 2000, 141:1901–1904.

    Article  PubMed  CAS  Google Scholar 

  37. Cordaillat M, Rugale C, Casellas D, et al.: Cardiorenal abnormalities associated with high sodium intake: correction by spironolactone in rats. Am J Physiol 2005, 289:R1137–R1143.

    CAS  Google Scholar 

  38. Yu HCM, Burrell LM, Black MJ, et al.: Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation 1998, 98:2621–2628.

    PubMed  CAS  Google Scholar 

  39. Dworkin LD, Benstein JA, Tolbert E, Feiner HD: Effects of salt restriction on renal growth and glomerular injury in rats with remnant kidneys. Kidney Int 1992, 41:1527–1532.

    PubMed  Google Scholar 

  40. Lax DS, Benstein JA, Tolbert E, Dworkin LD: Superiority of salt restriction over diuretics in reducing renal hypertrophy and injury in uninephrectomized SHR. Am J Physiol 1990, 258:F1675–F1681.

    Google Scholar 

  41. Allen TJ, Waldron MJ, Casley D, et al.: Salt restriction reduces hyperfiltration, renal enlargement, and albuminuria in experimental diabetes. Diabetes 1997, 46:19–24.

    Article  PubMed  CAS  Google Scholar 

  42. Uzu T, Kimura G: Diuretics shift circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 1999, 100:1635–1638.

    PubMed  CAS  Google Scholar 

  43. He FJ, Markandu ND, Sagnella GA, et al.: Plasma sodium: ignored and underestimated. Hypertension 2005, 45:98–102.

    Article  PubMed  CAS  Google Scholar 

  44. Gu JW, Anand V, Shek EW, et al.: Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells. Hypertension 1998, 31:1083–1087.

    PubMed  CAS  Google Scholar 

  45. Nickenig G, Strehlow K, Roeling J, et al.: Salt induces vascular AT1 receptor overexpression in vitro and in vivo. Hypertension 1998, 31:1272–1277.

    PubMed  CAS  Google Scholar 

  46. Kreutz R, Fernandez-Alfonso MS, Liu Y, et al.: Induction of cardiac angiotensin I-converting enzyme with dietary NaCl-loading in genetically hypertensive and normotensive rats. J Mol Med 1995, 73:243–248.

    Article  PubMed  CAS  Google Scholar 

  47. Gonzalez M, Lobos L, Castillo F, et al.: High-salt diet inhibits expression of angiotensin type 2 receptor in resistance arteries. Hypertension 2005, 45:853–859.

    Article  PubMed  CAS  Google Scholar 

  48. Laffer CL, Bolterman RJ, Romero JC, Elijovich F: Effect of salt on isoprostanes in salt-sensitive essential hypertension. Hypertension 2006, 47:434–440.

    Article  PubMed  CAS  Google Scholar 

  49. Fang Y, Mu JJ, He LC, et al.: Salt loading on plasma asymmetrical dimethylarginine and the protective role of potassium supplement in normotensive salt-sensitive Asians. Hypertension 2006, 48:724–729.

    Article  PubMed  CAS  Google Scholar 

  50. Kitiyakara C, Chabrashvili T, Chen Y, et al.: Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase. J Am Soc Nephrol 2003, 14:2775–2782.

    Article  PubMed  CAS  Google Scholar 

  51. Williams JM, Pollock JS, Pollock DM: Arterial pressure response to the antioxidant tempol and ETB receptor blockade in rats on a high-salt diet. Hypertension 2004, 44:770–775.

    Article  PubMed  CAS  Google Scholar 

  52. Yu L, Noble NA, Border WA: Therapeutic strategies to halt renal fibrosis. Curr Opin Pharmacol 2002, 2:177–181.

    Article  PubMed  CAS  Google Scholar 

  53. Ying WZ, Sanders PW: Dietary salt enhances glomerular endothelial nitric oxide synthase through TGF-beta1. Am J Physiol 1998, 275:F18–F24.

    PubMed  CAS  Google Scholar 

  54. Al-Awqati Q: Evidence-based politics of salt and blood pressure. Kidney Int 2006, 69:1707–1708.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Mimran MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

du Cailar, G., Mimran, A. Non-pressure-related effects of dietary sodium. Current Science Inc 9, 154–159 (2007). https://doi.org/10.1007/s11906-007-0027-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-007-0027-1

Keywords

Navigation