Skip to main content
Log in

Impact of diabetes and its treatments on skeletal diseases

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Diabetes mellitus is an enormous menace to public health globally. This chronic disease of metabolism will adversely affect the skeleton if not controlled. Both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are associated with an increased risk of osteoporosis and fragility fractures. Bone mineral density is reduced in T1DM, whereas patients with T2DM have normal or slightly higher bone density, suggesting impaired bone quality is involved. Detrimental effects of T1DM on the skeleton are more severe than T2DM, probably because of the lack of osteo-anabolic effects of insulin and other pancreatic hormones. In both T1DM and T2DM, low bone quality could be caused by various means, including but not limited to hyperglycemia, accumulation of advanced glycosylation end products (AGEs), decreased serum levels of osteocalcin and parathyroid hormone. Risk for osteoarthritis is also elevated in diabetic population. How diabetes accelerates the deterioration of cartilage remains largely unknown. Hyperglycemia and glucose derived AGEs could contribute to the development of osteoarthritis. Moreover, it is recognized that oral antidiabetic medicines affect bone metabolism and turnover as well. Insulin is shown to have anabolic effects on bone and hyperinsulinemia may help to explain the slightly higher bone density in patients with T2DM. Thiazolidinediones can promote bone loss and osteoporotic fractures by suppressing osteoblastogenesis and enhancing osteoclastogenesis. Metformin favors bone formation by stimulating osteoblast differentiation and protecting them against diabetic conditions such as hyperglycemia. Better knowledge of how diabetic conditions and its treatments influence skeletal tissues is in great need in view of the growing and aging population of patients with diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011; 378 (9785): 31–40

    Article  PubMed  CAS  Google Scholar 

  2. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010; 285(33): 25103–25108

    Article  PubMed  CAS  Google Scholar 

  3. Eriksen EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 2010; 11(4): 219–227

    Article  PubMed  Google Scholar 

  4. Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol 2011; 6(1): 121–145

    Article  PubMed  CAS  Google Scholar 

  5. Bonewald LF. The amazing osteocyte. J Bone Miner Res 2011; 26 (2): 229–238

    Article  PubMed  CAS  Google Scholar 

  6. Avrunin AS, Tikhilov RM. Osteocytic bone remodeling: history of the problem, morphological markers. Morfologiia 2011; 139(1): 86–94

    PubMed  CAS  Google Scholar 

  7. Rochefort GY, Pallu S, Benhamou CL. Osteocyte: the unrecognized side of bone tissue. Osteoporos Int 2010; 21(9): 1457–1469

    Article  PubMed  CAS  Google Scholar 

  8. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006; 17(12): 1726–1733

    Article  PubMed  CAS  Google Scholar 

  9. Botushanov NP, Orbetzova MM. Bone mineral density and fracture risk in patients with type 1 and type 2 diabetes mellitus. Folia Med (Plovdiv) 2009; 51(4): 12–17

    Google Scholar 

  10. Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 2009; 84(1): 45–55

    Article  PubMed  CAS  Google Scholar 

  11. Ahmed LA, Joakimsen RM, Berntsen GK, Fønnebø V, Schirmer H. Diabetes mellitus and the risk of non-vertebral fractures: the Tromsø study. Osteoporos Int 2006; 17(4): 495–500

    Article  PubMed  Google Scholar 

  12. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 2007; 166(5): 495–505

    Article  PubMed  Google Scholar 

  13. Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001; 24(7): 1192–1197

    Article  PubMed  CAS  Google Scholar 

  14. Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 2007; 22(9): 1317–1328

    Article  PubMed  CAS  Google Scholar 

  15. Hamann C, Kirschner S, Günther KP, Hofbauer LC. Bone, sweet bone-osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol 2012; 8(5): 297–305

    Article  PubMed  CAS  Google Scholar 

  16. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 2007; 18(4): 427–444

    Article  PubMed  CAS  Google Scholar 

  17. Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res 2011; 469(8): 2128–2138

    Article  PubMed  Google Scholar 

  18. Patel S, Hyer S, Tweed K, Kerry S, Allan K, Rodin A, Barron J. Risk factors for fractures and falls in older women with type 2 diabetes mellitus. Calcif Tissue Int 2008; 82(2): 87–91

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz AV, Hillier TA, Sellmeyer DE, Resnick HE, Gregg E, Ensrud KE, Schreiner PJ, Margolis KL, Cauley JA, Nevitt MC, Black DM, Cummings SR. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 2002; 25 (10): 1749–1754

    Article  PubMed  Google Scholar 

  20. Pijpers E, Ferreira I, de Jongh RT, Deeg DJ, Lips P, Stehouwer CD, Nieuwenhuijzen Kruseman AC. Older individuals with diabetes have an increased risk of recurrent falls: analysis of potential mediating factors: the Longitudinal Ageing Study Amsterdam. Age Ageing 2012; 41(3): 358–365

    Article  PubMed  Google Scholar 

  21. Volpato S, Leveille SG, Blaum C, Fried LP, Guralnik JM. Risk factors for falls in older disabled women with diabetes: the women’s health and aging study. J Gerontol A Biol Sci Med Sci 2005; 60(12): 1539–1545

    Article  PubMed  Google Scholar 

  22. Azidah AK, Hasniza H, Zunaina E. Prevalence of Falls and Its Associated Factors among Elderly Diabetes in a Tertiary Center, Malaysia. Curr Gerontol Geriatr Res 2012; 2012: 539073

    PubMed  CAS  Google Scholar 

  23. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 2005; 289(5): E735–E745

    Article  PubMed  CAS  Google Scholar 

  24. Barbagallo I, Vanella A, Peterson SJ, Kim DH, Tibullo D, Giallongo C, Vanella L, Parrinello N, Palumbo GA, Di Raimondo F, Abraham NG, Asprinio D. Overexpression of heme oxygenase-1 increases human osteoblast stem cell differentiation. J Bone Miner Metab 2010; 28(3): 276–288

    Article  PubMed  CAS  Google Scholar 

  25. Keats E, Khan ZA. Unique responses of stem cell-derived vascular endothelial and mesenchymal cells to high levels of glucose. PLoS ONE 2012; 7(6): e38752

    Article  PubMed  CAS  Google Scholar 

  26. Stolzing A, Colley H, Scutt A. Effect of age and diabetes on the response of mesenchymal progenitor cells to fibrin matrices. Int J Biomater 2011; 2011: 378034

    PubMed  CAS  Google Scholar 

  27. Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol 2009; 15(33): 4137–4142

    Article  PubMed  CAS  Google Scholar 

  28. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006; 212(2): 167–178

    Article  PubMed  CAS  Google Scholar 

  29. King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 2004; 122(4): 333–338

    Article  PubMed  CAS  Google Scholar 

  30. Grassi F, Tell G, Robbie-Ryan M, Gao Y, Terauchi M, Yang X, Romanello M, Jones DP, Weitzmann MN, Pacifici R. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci USA 2007; 104(38): 15087–15092

    Article  PubMed  CAS  Google Scholar 

  31. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 2010; 31(3): 266–300

    Article  PubMed  CAS  Google Scholar 

  32. Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 2006; 17 (10): 1514–1523

    Article  PubMed  CAS  Google Scholar 

  33. Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P. Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci 2008; 1126(1): 166–172

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE, Tylavsky FA, Black DM, Cummings SR, Harris TB, Bauer DC; Health, Aging, and Body Composition Study. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 2009; 94 (7): 2380–2386

    Article  PubMed  CAS  Google Scholar 

  35. Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 2011; 26(4): 677–680

    Article  PubMed  CAS  Google Scholar 

  36. Karsenty G, Oury F. The central regulation of bone mass, the first link between bone remodeling and energy metabolism. J Clin Endocrinol Metab 2010; 95(11): 4795–4801

    Article  PubMed  CAS  Google Scholar 

  37. Karsenty G, Oury F. Biology without walls: the novel endocrinology of bone. Annu Rev Physiol 2012; 74(1): 87–105

    Article  PubMed  CAS  Google Scholar 

  38. Karsenty G. Bone endocrine regulation of energy metabolism and male reproduction. C R Biol 2011; 334(10): 720–724

    Article  PubMed  CAS  Google Scholar 

  39. Lee NK, Karsenty G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 2008; 19(5): 161–166

    Article  PubMed  CAS  Google Scholar 

  40. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130(3): 456–469

    Article  PubMed  CAS  Google Scholar 

  41. Karsenty G. The mutual dependence between bone and gonads. J Endocrinol 2012; 213(2): 107–114

    Article  PubMed  CAS  Google Scholar 

  42. Movahed A, Larijani B, Nabipour I, Kalantarhormozi M, Asadipooya K, Vahdat K, Akbarzadeh S, Farrokhnia M, Assadi M, Amirinejad R, Bargahi A, Sanjdideh Z. Reduced serum osteocalcin concentrations are associated with type 2 diabetes mellitus and the metabolic syndrome components in postmenopausal women: the crosstalk between bone and energy metabolism. J Bone Miner Metab 2012; 30(6): 683–691

    Article  PubMed  CAS  Google Scholar 

  43. Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 2011; 22(1): 187–194

    Article  PubMed  CAS  Google Scholar 

  44. Bao YQ, Zhou M, Zhou J, Lu W, Gao YC, Pan XP, Tang JL, Lu HJ, Jia WP. Relationship between serum osteocalcin and glycaemic variability in type 2 diabetes. Clin Exp Pharmacol Physiol 2011; 38(1): 50–54

    Article  PubMed  CAS  Google Scholar 

  45. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T. Serum osteocalcin/bone-specific alkaline phosphatase ratio is a predictor for the presence of vertebral fractures in men with type 2 diabetes. Calcif Tissue Int 2009; 85(3): 228–234

    Article  PubMed  CAS  Google Scholar 

  46. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785–795

    Article  Google Scholar 

  47. Polymeris AD, Doumouchtsis KK, Giagourta I, Karga H. Effect of an oral glucose load on PTH, 250HD3, calcium, and phosphorus homeostasis in postmenopausal women. Endocr Res 2011; 36(2): 45–52

    Article  PubMed  CAS  Google Scholar 

  48. Inaba M, Nagasue K, Okuno S, Ueda M, Kumeda Y, Imanishi Y, Shoji T, Ishimura E, Ohta T, Nakatani T, Kim M, Nishizawa Y. Impaired secretion of parathyroid hormone, but not refractoriness of osteoblast, is a major mechanism of low bone turnover in hemodialyzed patients with diabetes mellitus. Am J Kidney Dis 2002; 39(6): 1261–1269

    Article  PubMed  CAS  Google Scholar 

  49. Inaba M, Okuno S, Kumeda Y, Yamakawa T, Ishimura E, Nishizawa Y. Increased incidence of vertebral fracture in older female hemodialyzed patients with type 2 diabetes mellitus. Calcif Tissue Int 2005; 76(4): 256–260

    Article  PubMed  CAS  Google Scholar 

  50. Dobnig H, Piswanger-Sölkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A, Maier E, Maritschnegg P, Sieberer C, Fahrleitner-Pammer A. Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 2006; 91(9): 3355–3363

    Article  PubMed  CAS  Google Scholar 

  51. Picton ML, Moore PR, Mawer EB, Houghton D, Freemont AJ, Hutchison AJ, Gokal R, Hoyland JA. Down-regulation of human osteoblast PTH/PTHrP receptor mRNA in end-stage renal failure. Kidney Int 2000; 58(4): 1440–1449

    Article  PubMed  CAS  Google Scholar 

  52. Kuchler U, Spilka T, Baron K, Tangl S, Watzek G, Gruber R. Intermittent parathyroid hormone fails to stimulate osseointegration in diabetic rats. Clin Oral Implants Res 2011; 22(5): 518–523

    Article  PubMed  Google Scholar 

  53. Murphy L, Helmick CG. The impact of osteoarthritis in the United States: a population-health perspective. Am J Nurs 2012; 112(3 Suppl 1): S13–S19

    Article  PubMed  Google Scholar 

  54. Berenbaum F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype. Postgrad Med J 2012; 88(1038): 240–242

    Article  PubMed  Google Scholar 

  55. Cheng YJ, Imperatore G, Caspersen CJ, Gregg EW, Albright AL, Helmick CG. Prevalence of diagnosed arthritis and arthritisattributable activity limitation among adults with and without diagnosed diabetes: United States, 2008–2010. Diabetes Care 2012; 35(8): 1686–1691

    Article  PubMed  Google Scholar 

  56. Kayal RA, Alblowi J, McKenzie E, Krothapalli N, Silkman L, Gerstenfeld L, Einhorn TA, Graves DT. Diabetes causes the accelerated loss of cartilage during fracture repair which is reversed by insulin treatment. Bone 2009; 44(2): 357–363

    Article  PubMed  CAS  Google Scholar 

  57. Rosa SC, Rufino AT, Judas FM, Tenreiro CM, Lopes MC, Mendes AF. Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes. J Cell Biochem 2011; 112(10): 2813–2824

    Article  PubMed  CAS  Google Scholar 

  58. Davies-Tuck ML, Wang Y, Wluka AE, Berry PA, Giles GG, English DR, Cicuttini FM. Increased fasting serum glucose concentration is associated with adverse knee structural changes in adults with no knee symptoms and diabetes. Maturitas 2012; 72 (4): 373–378

    Article  PubMed  CAS  Google Scholar 

  59. Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JW, Lafeber FP, TeKoppele JM. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 2002; 46(1): 114–123

    Article  PubMed  CAS  Google Scholar 

  60. DeGroot J, Verzijl N, Jacobs KM, Budde M, Bank RA, Bijlsma JW, TeKoppele JM, Lafeber FP. Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthritis Cartilage 2001; 9(8): 720–726

    Article  PubMed  CAS  Google Scholar 

  61. DeGroot J, Verzijl N, Wenting-van Wijk MJ, Jacobs KM, Van El B, Van Roermund PM, Bank RA, Bijlsma JW, TeKoppele JM, Lafeber FP. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum 2004; 50(4): 1207–1215

    Article  PubMed  CAS  Google Scholar 

  62. Yammani RR, Carlson CS, Bresnick AR, Loeser RF. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. Arthritis Rheum 2006; 54(9): 2901–2911

    Article  PubMed  CAS  Google Scholar 

  63. Nah SS, Choi IY, Yoo B, Kim YG, Moon HB, Lee CK. Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-α in human osteoarthritic chondrocytes. FEBS Lett 2007; 581(9): 1928–1932

    Article  PubMed  CAS  Google Scholar 

  64. Nah SS, Choi IY, Lee CK, Oh JS, Kim YG, Moon HB, Yoo B. Effects of advanced glycation end products on the expression of COX-2, PGE2 and NO in human osteoarthritic chondrocytes. Rheumatology (Oxford) 2008; 47(4): 425–431

    Article  CAS  Google Scholar 

  65. Rasheed Z, Akhtar N, Haqqi TM. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-kB in human osteoarthritis chondrocytes. Rheumatology (Oxford) 2011; 50(5): 838–851

    Article  CAS  Google Scholar 

  66. Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe K, Azuma Y, Ohta T, Kadowaki T, Nakamura K, Kawaguchi H. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000; 105(7): 935–943

    Article  PubMed  CAS  Google Scholar 

  67. Akune T, Ogata N, Hoshi K, Kubota N, Terauchi Y, Tobe K, Takagi H, Azuma Y, Kadowaki T, Nakamura K, Kawaguchi H. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 2002; 159(1): 147–156

    Article  PubMed  CAS  Google Scholar 

  68. Kawamura N, Kugimiya F, Oshima Y, Ohba S, Ikeda T, Saito T, Shinoda Y, Kawasaki Y, Ogata N, Hoshi K, Akiyama T, Chen WS, Hay N, Tobe K, Kadowaki T, Azuma Y, Tanaka S, Nakamura K, Chung UI, Kawaguchi H. Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS ONE 2007; 2(10): e1058

    Article  PubMed  CAS  Google Scholar 

  69. Bouillon R, Bex M, Van Herck E, Laureys J, Dooms L, Lesaffre E, Ravussin E. Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J Clin Endocrinol Metab 1995; 80(4): 1194–1202

    Article  PubMed  CAS  Google Scholar 

  70. Campos Pastor MM, López-Ibarra PJ, Escobar-Jiménez F, Serrano Pardo MD, García-Cervigón AG. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int 2000; 11(5): 455–459

    Article  PubMed  CAS  Google Scholar 

  71. Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188–1193

    Article  PubMed  CAS  Google Scholar 

  72. Mimura K, Umeda F, Hiramatsu S, Taniguchi S, Ono Y, Nakashima N, Kobayashi K, Masakado M, Sako Y, Nawata H. Effects of a new oral hypoglycaemic agent (CS-045) on metabolic abnormalities and insulin resistance in type 2 diabetes. Diabet Med 1994; 11(7): 685–691

    Article  PubMed  CAS  Google Scholar 

  73. Takino H, Okuno S, Uotani S, Yano M, Matsumoto K, Kawasaki E, Takao Y, Yamasaki H, Yamaguchi Y, Akazawa S, Nagataki S. Increased insulin responsiveness after CS-045 treatment in diabetes associated with Werner’s syndrome. Diabetes Res Clin Pract 1994; 24(3): 167–172

    Article  PubMed  CAS  Google Scholar 

  74. Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T. CS-045, a new oral antidiabetic agent, stimulates fructose-2,6-bisphosphate production in rat hepatocytes. Eur J Pharmacol 1994; 254(3): 257–262

    Article  PubMed  CAS  Google Scholar 

  75. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 2002; 143(6): 2376–2384

    Article  PubMed  CAS  Google Scholar 

  76. Lazarenko OP, Rzonca SO, Suva LJ, Lecka-Czernik B. Netoglitazone is a PPAR-γ ligand with selective effects on bone and fat. Bone 2006; 38(1): 74–84

    Article  PubMed  CAS  Google Scholar 

  77. Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B. Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 2004; 145(1): 401–406

    Article  PubMed  CAS  Google Scholar 

  78. Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, Strotmeyer ES, Resnick HE, Carbone L, Beamer BA, Park SW, Lane NE, Harris TB, Cummings SR. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 2006; 91(9): 3349–3354

    Article  PubMed  CAS  Google Scholar 

  79. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, Kravitz BG, Yu D, Heise MA, Aftring RP, Viberti G; Diabetes Outcome Progression Trial (ADOPT) Study Group. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2008; 31(5): 845–851

    Article  PubMed  CAS  Google Scholar 

  80. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95(2): 592–600

    Article  PubMed  CAS  Google Scholar 

  81. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 2007; 92(4): 1305–1310

    Article  PubMed  CAS  Google Scholar 

  82. Yaturu S, Bryant B, Jain SK. Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 2007; 30(6): 1574–1576

    Article  PubMed  CAS  Google Scholar 

  83. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 2004; 113(6): 846–855

    PubMed  CAS  Google Scholar 

  84. Cho SW, Yang JY, Her SJ, Choi HJ, Jung JY, Sun HJ, An JH, Cho HY, Kim SW, Park KS, Kim SY, Baek WY, Kim JE, Yim M, Shin CS. Osteoblast-targeted overexpression of PPARγ inhibited bone mass gain in male mice and accelerated ovariectomy-induced bone loss in female mice. J Bone Miner Res 2011; 26(8): 1939–1952

    Article  PubMed  CAS  Google Scholar 

  85. Wan Y, Chong LW, Evans RM. PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 2007; 13(12): 1496–1503

    Article  PubMed  CAS  Google Scholar 

  86. Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 2005; 146(3): 1226–1235

    Article  PubMed  CAS  Google Scholar 

  87. Lecka-Czernik B, Gubrij I, Moerman EJ, Kajkenova O, Lipschitz DA, Manolagas SC, Jilka RL. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J Cell Biochem 1999; 74(3): 357–371

    Article  PubMed  CAS  Google Scholar 

  88. Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G, Kahn SE; ADOPT Study Group. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 2010; 95(1): 134–142

    Article  PubMed  CAS  Google Scholar 

  89. Sorocéanu MA, Miao D, Bai XY, Su H, Goltzman D, Karaplis AC. Rosiglitazone impacts negatively on bone by promoting osteoblast/ osteocyte apoptosis. J Endocrinol 2004; 183(1): 203–216

    Article  PubMed  CAS  Google Scholar 

  90. Mabilleau G, Mieczkowska A, Edmonds ME. Thiazolidinediones induce osteocyte apoptosis and increase sclerostin expression. Diabet Med 2010; 27(8): 925–932

    Article  PubMed  CAS  Google Scholar 

  91. Wei W, Wan Y. Thiazolidinediones on PPARγ: the roles in bone remodeling. PPAR Res 2011; 2011: 867180

    Article  PubMed  CAS  Google Scholar 

  92. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005; 48(7): 1292–1299

    Article  PubMed  CAS  Google Scholar 

  93. Gao Y, Xue J, Li X, Jia Y, Hu J. Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells. J Pharm Pharmacol 2008; 60(12): 1695–1700

    Article  PubMed  CAS  Google Scholar 

  94. Shah M, Kola B, Bataveljic A, Arnett TR, Viollet B, Saxon L, Korbonits M, Chenu C. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone 2010; 47(2): 309–319

    Article  PubMed  CAS  Google Scholar 

  95. Gao Y, Li Y, Xue J, Jia Y, Hu J. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol 2010; 635(1–3): 231–236

    Article  PubMed  CAS  Google Scholar 

  96. Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, Arnol V, Sedlinsky C. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res 2010; 25(2): 211–221

    Article  PubMed  CAS  Google Scholar 

  97. Takatani T, Minagawa M, Takatani R, Kinoshita K, Kohno Y. AMP-activated protein kinase attenuates Wnt/β-catenin signaling in human osteoblastic Saos-2 cells. Mol Cell Endocrinol 2011; 339(1–2): 114–119

    Article  PubMed  CAS  Google Scholar 

  98. Jang WG, Kim EJ, Bae IH, Lee KN, Kim YD, Kim DK, Kim SH, Lee CH, Franceschi RT, Choi HS, Koh JT. Metformin induces osteoblast differentiation via orphan nuclear receptor SHPmediated transactivation of Runx2. Bone 2011; 48(4): 885–893

    Article  PubMed  CAS  Google Scholar 

  99. Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications 2010; 24(5): 334–344

    Article  PubMed  Google Scholar 

  100. Schurman L, McCarthy AD, Sedlinsky C, Gangoiti MV, Arnol V, Bruzzone L, Cortizo AM. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes 2008; 116(6): 333–340

    Article  PubMed  CAS  Google Scholar 

  101. Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, Jia CH, Wen ZH, Jin DD, Bai XC. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 2011; 112(10): 2902–2909

    Article  PubMed  CAS  Google Scholar 

  102. Liu L, Zhang C, Hu Y, Peng B. Protective effect of metformin on periapical lesions in rats by decreasing the ratio of receptor activator of nuclear factor kappa B ligand/osteoprotegerin. J Endod 2012; 38(7): 943–947

    Article  PubMed  Google Scholar 

  103. Sukala WR, Page R, Cheema BS. Exercise training in high-risk ethnic populations with type 2 diabetes: a systematic review of clinical trials. Diabetes Res Clin Pract 2012; 97(2): 206–216

    Article  PubMed  Google Scholar 

  104. Dunkley AJ, Charles K, Gray LJ, Camosso-Stefinovic J, Davies MJ, Khunti K. Effectiveness of interventions for reducing diabetes and cardiovascular disease risk in people with metabolic syndrome: systematic review and mixed treatment comparison meta-analysis. Diabetes Obes Metab 2012; 14(7): 616–625

    Article  PubMed  CAS  Google Scholar 

  105. Petersen JL, McGuire DK. Impaired glucose tolerance and impaired fasting glucose—a review of diagnosis, clinical implications and management. Diab Vasc Dis Res 2005; 2(1): 9–15

    Article  PubMed  Google Scholar 

  106. Kelley GA, Kelley KS, Kohrt WM. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 2012; 13 (1): 177

    Article  PubMed  Google Scholar 

  107. Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr) 2012; 34(6): 1493–1515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, W., Li, X. Impact of diabetes and its treatments on skeletal diseases. Front. Med. 7, 81–90 (2013). https://doi.org/10.1007/s11684-013-0243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-013-0243-9

Keywords

Navigation