Skip to main content

Advertisement

Log in

Circulating extracellular vesicles in the aging process: impact of aerobic exercise

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Our aim was to investigate transitory and delayed exercise effects on serum extracellular vesicles (EVs) in aging process. Male Wistar rats of 3-, 21-, and 26-month old were allocated into exercised and sedentary groups. The exercise protocol consisted in a daily moderate treadmill exercise (20 min daily during 2 weeks). Trunk blood was collected 1 and 18 h after the last exercise session, and circulating EVs were obtained. CD63 levels and acetylcholinesterase (AChE) activity were used as markers of exosome, a subtype of EVs. In addition, the quantification of amyloid-β (Aβ) levels and the oxidative status parameters, specifically reactive species content, superoxide dismutase (SOD) activity, and SOD1 content were evaluated. Aged rats showed reduced CD63 levels and increased AChE activity in circulating exosomes compared to young ones. Moreover, higher reactive species levels were found in circulating EVs of aged rats. Delayed exercise effects were observed on peripheral EVs, since CD63, reactive species content, and AChE activity were altered 18 h after the last exercise session. Our results suggest that the healthy aging process can modify circulating EVs profile, and exercise-induced beneficial effects may be related to its modulation on EVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rajendran L, Bali J, Barr MM, Krämer-Albers EM, Picou F, Raposo G, van der Vos KE, van Niel G, Wang J, Breakefield XO (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34:15482–15489. doi:10.1523/jneurosci.3258-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases. Front Physiol 3:1–10. doi:10.3389/fphys.2012.00124

    Article  Google Scholar 

  3. Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E (2012) The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 287:43108–43115. doi:10.1074/jbc.M112.404467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881. doi:10.1111/j.1600-0854.2008.00734.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflamm 11:68. doi:10.1186/1742-2094-11-68

    Article  Google Scholar 

  6. Lee Y, Andaloussi SE, Wood MJ (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21:R125–R134. doi:10.1093/hmg/dds317

    Article  CAS  PubMed  Google Scholar 

  7. Chivet M, Hemming F, Pernet-Gallay K, Fraboulet S, Sadoul R (2012) Emerging role of neuronal exosomes in the central nervous system. Front Physiol 3:1–6. doi:10.3389/fphys.2012.00145

    Article  Google Scholar 

  8. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimer Dement 11:600–607. doi:10.1016/j.jalz.2014.06.008

    Article  Google Scholar 

  9. Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, Terrian DM (2008) Senescence-associated exosome release from human prostate cancer cells. Cancer Res 68:7864–7871. doi:10.1158/0008-5472

    Article  CAS  PubMed  Google Scholar 

  10. Fröhlich D, Kuo WP, Frühbeis C, Sun JJ, Zehendner CM, Luhmann HJ, Pinto S, Toedling J, Trotter J, Krämer-Albers EM (2014) Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Phil Trans R Soc B 369:1–13. doi:10.1098/rstb.2013.0510

    Article  Google Scholar 

  11. Azevedo LC, Janiszewski M, Pontieri V, Pedro MA, Bassi E, Tucci PJ, Laurindo FR (2007) Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit Care Med 11:R120. doi:10.1186/cc6176

    Google Scholar 

  12. Janiszewski M, Carmo AO, Pedro MA, Silva E, Knobel E, Laurindo FR (2004) Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: a novel vascular redox pathway. Crit Care Med 32:818–825. doi:10.1097/01.CCM.0000114829.17746.19

    Article  CAS  PubMed  Google Scholar 

  13. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neruochem 59:1609–10623

    Article  CAS  Google Scholar 

  14. Siqueira IR, Fochesatto C, de Andrade A, Santos M, Hagen M, Bello-Klein A, Netto CA (2005) Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 23:663–671. doi:10.1016/j.ijdevneu.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  15. Franco OH, de Laet C, Peeters A, Jonker J, Mackenbach J, Nusselder W (2015) Effects of physical activity on life expectancy with cardiovascular disease. Arch Int Med 165:2355–2360. doi:10.1001/archinte.165.20.2355

    Article  Google Scholar 

  16. Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, O’Keefe JH, Milani RV, Blair SN, Church TS (2013) Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J J77:281–292

    Article  Google Scholar 

  17. Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT (2002) Exercise, experience and the aging brain. Neurobiol Aging 23:941–955. doi:10.1016/S0197-4580(02)00028-3

    Article  PubMed  Google Scholar 

  18. Lin TW, Shih YH, Chen SJ, Lien CH, Chang CY, Huang TY, Chen C, Huang T, Chen S, Jen C, Kuo Y (2015) Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer’s disease (APP/PS1) transgenic mice. Neurobiol Learn Mem 118:189–197. doi:10.1016/j.nlm.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  19. Frühbeis C, Helmig S, Tug S, Simon P, Krämer-Albers EM (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesic 4:1–11. doi:10.3402/jev.v4.28239

    Google Scholar 

  20. Hammeren J, Powers S, Lawler J, Criswell D, Martin D, Lowenthal D, Pollock M (1992) Exercise training-induced alterations in skeletal muscle oxidative and antioxidant enzyme activity in senescent rats. Int J Sports Med 13:412–416. doi:10.1055/s-2007-1021290

    Article  CAS  PubMed  Google Scholar 

  21. Radák Z, Kaneko T, Tahara S, Nakamoto H, Pucsok J, Sasvári M, Nyakas C, Goto S (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23. doi:10.1016/S0197-0186(00)00063-2

    Article  PubMed  Google Scholar 

  22. Cechetti F, Fochesatto C, Scopel D, Nardin P, Gonçalves CA, Netto CA, Siqueira IR (2008) Effect of a neuroprotective exercise protocol on oxidative state and BDNF levels in the rat hippocampus. Brain Res 1188:182–188. doi:10.1016/j.brainres.2007.10.012

    Article  CAS  PubMed  Google Scholar 

  23. Elsner VR, Lovatel GA, Moysés F, Bertoldi K, Spindler C, Cechinel LR, Muotri AR, Siqueira IR (2013) Exercise induces age-dependent changes on epigenetic parameters in rat hippocampus: a preliminary study. Exp Gerontol 48:136–139. doi:10.1016/j.exger.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  24. Lovatel GA, Elsner VR, Bertoldi K, Vanzella C, dos Santos Moysés F, Vizuete A, Spindler C, Cechinel LR, Netto CA, Muotri AR, Siqueira IR (2013) Treadmill exercise induces age-related changes in aversive memory, neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem 101:94–102. doi:10.1016/j.nlm.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  25. Spindler C, Cechinel LR, Basso C, Moysés F, Bertoldi K, Roesler R, Lovatel GA, Elsner VR, Siqueira IR (2014) Treadmill exercise alters histone acetyltransferases and histone deacetylases activities in frontal cortices from wistar rats. Cell Mol Neurobiol 34:1097–1101. doi:10.1007/s10571-014-0096-z

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi H, Fukumoto H, Maeda R, Terauchi J, Kato K, Miyamoto M (2010) Ameliorative effects of a non-competitive BACE1 inhibitor TAK-070 on Aβ peptide levels and impaired learning behavior in aged rats. Brain Res 1361:146–156. doi:10.1016/j.brainres.2010.09.032

    Article  CAS  PubMed  Google Scholar 

  27. Scopel D, Fochesatto C, Cimarosti H, Rabbo M, Belló-Klein A, Salbego C, Netto CA, Siqueira IR (2006) Exercise intensity influences cell injury in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Res Bull 71:155–159. doi:10.1016/j.brainresbull.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  28. Davidson SM, Takov K, Yellon DM (2017) Exosomes and cardiovascular protection. Cardiovas Drug Ther 31:77–86. doi:10.1007/s10557-016-6698-6

    Article  CAS  Google Scholar 

  29. Eitan E, Green J, Bodogai M, Mode NA, Bæk R, Jørgensen MM, Freeman DW, Witwer KW, Zonderman AB, Biragyn A, Mattson MP, Noren Hooten N, Evans MK (2017) Age-related changes in plasma extracellular vesicle characteristics and internalization by leukocytes. Sci Rep 7:1342. doi:10.1038/s41598-017-01386-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  31. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  32. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231. doi:10.1021/tx00026a012

    Article  CAS  PubMed  Google Scholar 

  33. Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Mol Cell Biochem 36:59–66

    CAS  Google Scholar 

  34. Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, Go G, Yoon YJ, Kim JH, Jang SC, Park KS, Choi EJ, Kim KP, Desiderio DM, Kim YK, Lötvall J, Hwang D, Gho YS (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesic 19:1–7. doi:10.3402/jev.v2i0.20384

    CAS  Google Scholar 

  35. Savina A, Vidal M, Colombo MI (2002) The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci 115:2505–2515

    CAS  PubMed  Google Scholar 

  36. Chaturvedi P, Kalani A, Medina I, Familtseva A, Tyagi SC (2015) Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. J Cell Mol Med 19:2153–2161. doi:10.1111/jcmm.12589

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Weinreb O, Amit T, Bar-Am O, Youdim MB (2015) Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer’s disease. Br J Pharmacol. doi:10.1111/bph.13318

    PubMed  PubMed Central  Google Scholar 

  38. Haider S, Saleem S, Perveen T, Tabassum S, Batool Z, Sadir S, Liaquat L, Madiha S (2014) Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. Age 36:1291–1302. doi:10.1007/s11357-014-9653-0

    Article  CAS  Google Scholar 

  39. Lakhal S, Wood MJ (2011) Exosome nanotechnology: an emerging paradigm shift in drug delivery. BioEssays 33:737–741. doi:10.1002/bies.201100076

    Article  CAS  PubMed  Google Scholar 

  40. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. doi:10.1038/ncb1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnstone RM, Mathew A, Mason AB, Teng K (1991) Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol 147:27–36. doi:10.1002/jcp.1041470105

    Article  CAS  PubMed  Google Scholar 

  42. Mendelsohn AR, Larrick JW (2013) Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuv Res 16:518–523. doi:10.1089/rej.2013.1530

    Article  CAS  Google Scholar 

  43. Terman A, Brunk UT (2004) Aging as a catabolic malfunction. Int J Biochem Cell Biol 36:2365–2375. doi:10.1016/j.biocel.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  44. Johnstone RM, MathewA Mason AB, Teng K (1991) Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol 147:27–36. doi:10.1002/jcp.1041470105

    Article  CAS  PubMed  Google Scholar 

  45. Yuyama K, Sun H, Usuki S, Sakai S, Hanamatsu H, Mioka T, Kimura N, Okada M, Tahara H, Furukawa J, Fulitani N, Shinohara Y, Fujitani N (2015) A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide. FEBS Lett 589:84–88. doi:10.1016/j.febslet.2014.11.027

    Article  CAS  PubMed  Google Scholar 

  46. Gambim MH, Do Carmo ADO, Marti L, Veríssimo-Filho S, Lopes LR, Janiszewski M (2007) Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction. Crit Care Med 11:1–12. doi:10.1186/cc6133

    Google Scholar 

  47. Halliwell B (1975) The superoxide dismutase activity of iron complexes. FEBS Lett 5:34–38. doi:10.1016/0014-5793(75)80105-0

    Article  Google Scholar 

  48. Liu J, Mori A (1993) Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech Ageing Dev 71:23–30. doi:10.1016/00476374(93)90032-M

    Article  CAS  PubMed  Google Scholar 

  49. Silverman JM, Fernando SM, Grad LI, Hill AF, Turner BJ, Yerbury JJ, Cashman NR (2016) Disease mechanisms in ALS: misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell Mol Neurobiol 36(3):377–381

    Article  CAS  PubMed  Google Scholar 

  50. Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, Nagai Y (2015) Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc Natl Acad Sci 112(19):E2497–E2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451

    Article  CAS  PubMed  Google Scholar 

  52. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J-proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, Zhang C, Ji X, Lui Y (2014) MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 1592:65–72

    Article  CAS  PubMed  Google Scholar 

  54. Yao L, Liu Z, Zhu J, Li B, Chai C, Tian Y (2015) Clinical evaluation of circulating microRNA-25 level change in sepsis and its potential relationship with oxidative stress. Int J Clin Exp Pathol 8(7):7675

    PubMed  PubMed Central  Google Scholar 

  55. Yi H, Huang Y, Yang F, Liu W, He S, Hu X (2017) MicroRNA-182 aggravates cerebral ischemia injury by targeting inhibitory member of the ASPP family (iASPP). Arch Biochem Biophys 620:52–58

    Article  CAS  PubMed  Google Scholar 

  56. Safdar A, Saleem A, Tarnopolsky MA (2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12:504–517. doi:10.1038/nrendo.2016.76

    Article  CAS  PubMed  Google Scholar 

  57. Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, Zheng Y, Riquelme JA, Kearney J, Sharma V, Multhoff G, Hall AR, Davidson SM (2015) Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 65:1525–1536. doi:10.1016/j.jacc.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  58. Giric Z, Varga ZV, Baranyai T, Sipos P, Paloczi K, Kittel A, Buzás EI, Ferdinandy P (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68:75–78

    Article  Google Scholar 

  59. Fraile-Bermúdez AB, Kortajarena M, Zarrazquin I, Maquibar A, Yanguas JJ, Sánchez-Fernández CE, Gil S, Irazutas A, Ruiz-Litago F (2015) Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals. Exp Gerontol 70:26–31. doi:10.1016/j.exger.2015.07.005

    Article  PubMed  Google Scholar 

  60. Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, Nickening G, Werner N (2013) High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 98:94–106. doi:10.1093/cvr/cvt013

    Article  CAS  PubMed  Google Scholar 

  61. Samadi A, Estrada M, Pérez C, Rodríguez-Franco MI, Iriepa I, Moraleda I, Chioua M, Marco-Contelles J (2012) Pyridonepezils, new dual AChE inhibitors as potential drugs for the treatment of Alzheimer’s disease: synthesis, biological assessment, and molecular modeling. Eur J Med Chem 57:296–301. doi:10.1016/j.ejmech.2012.09.030

    Article  CAS  PubMed  Google Scholar 

  62. Yang RY, Zhao G, Wang DM, Pang XC, Wang SB, Fang JS, Du GH (2015) DL0410 can reverse cognitive impairment, synaptic loss and reduce plaque load in APP/PS1 transgenic mice. Pharmacol Biochem B 139:15–26. doi:10.1016/j.pbb.2015.10.009

    Article  CAS  Google Scholar 

  63. Jolitha AB, Subramanyam MVV, Devi AS (2009) Age-related responses of the rat cerebral cortex: influence of vitamin E and exercise on the cholinergic system. Biogerontology 10:53–63. doi:10.1007/s10522-008-9154-6

    Article  CAS  PubMed  Google Scholar 

  64. Kim G, Kim E (2013) Effects of treadmill training on limb motor function and acetylcholinesterase activity in rats with stroke. J Phys Ther Sci 25:1227–1230. doi:10.1589/jpts.25.1227

    Article  PubMed  PubMed Central  Google Scholar 

  65. Madden LA, Vince RV, Sandstrom ME, Taylor L, McNaughton L, Laden G (2008) Microparticle-associated vascular adhesion molecule-1 and tissue factor follow a circadian rhythm in healthy human subjects. Thromb Haemostasis 99(5):909

    CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (Grant #No. 476634/2013-01). Dr. I.R. Siqueira; K. Bertoldi; L.R. Cechinel; B. Schallenberger received CNPq fellowships. The authors would like to acknowledge Prof. Adriana Pohlmann for providing access to Nanosight LM10-HS Instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionara Rodrigues Siqueira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoldi, K., Cechinel, L.R., Schallenberger, B. et al. Circulating extracellular vesicles in the aging process: impact of aerobic exercise. Mol Cell Biochem 440, 115–125 (2018). https://doi.org/10.1007/s11010-017-3160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3160-4

Keywords

Navigation