Skip to main content

Advertisement

Log in

Thioredoxin-Interacting Protein: Pathophysiology and Emerging Pharmacotherapeutics in Cardiovascular Disease and Diabetes

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The thioredoxin system, which consists of thioredoxin (Trx), nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), has emerged as a major anti-oxidant involved in the maintenance of cellular physiology and survival. Dysregulation in this system has been associated with metabolic, cardiovascular, and malignant disorders. Thioredoxin-interacting protein (TXNIP), also known as vitamin D-upregulated protein or thioredoxin-binding-protein-2, functions as a physiological inhibitor of Trx, and pathological suppression of Trx by TXNIP has been demonstrated in diabetes and cardiovascular diseases. Furthermore, TXNIP effects are partially Trx-independent; these include direct activation of inflammation and inhibition of glucose uptake. Many of the effects of TXNIP are initiated by its dissociation from intra-nuclear binding with Trx or other SH-containing proteins: these effects include its migration to cytoplasm, modulating stress responses in mitochondria and endoplasmic reticulum, and also potentially activating apoptotic pathways. TXNIP also interacts with the nitric oxide (NO) signaling system, with apparent suppression of NO effect. TXNIP production is modulated by redox stress, glucose levels, hypoxia and several inflammatory activators. In recent studies, it has been shown that therapeutic agents including insulin, metformin, angiotensin converting enzyme inhibitors and calcium channel blockers reduce TXNIP expression, although it is uncertain to what extent TXNIP suppression contributes to their clinical efficacy. This review addresses the role of TXNIP in health and in cardiovascular and metabolic disorders. Finally, the potential advantages (and disadvantages) of pharmacological suppression of TXNIP in cardiovascular disease and diabetes are summarized

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal. 2013;18:1165–207.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Nishiyama A, Matsui M, Iwata S, et al. Identification of thioredoxin-binding protein-2/vitamin D (3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem. 1999;274:21645–50.

    Article  CAS  PubMed  Google Scholar 

  3. Patwari P, Higgins LJ, Chutkow WA, Yoshioka J, Lee RT. The interaction of thioredoxin with Txnip evidence for formation of a mixed disulfide by disulfide exchange. J Biol Chem. 2006;281:21884–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Patwari P, Chutkow WA, Cummings K, et al. Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins. J Biol Chem. 2009;284:24996–5003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem. 2000;275:23120–6.

    Article  CAS  PubMed  Google Scholar 

  6. Luttrell LM, Ferguson SS, Daaka Y, et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science (New York, NY) 1999;283:655–61.

  7. Patwari P, Lee RT. An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab TEM. 2012;23:216–22.

    Article  CAS  Google Scholar 

  8. Junn E, Han SH, Im JY, et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. Journal of immunology (Baltimore, Md : 1950) 2000;164:6287–95.

  9. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem. 2004;279:30369–74.

    Article  CAS  PubMed  Google Scholar 

  10. Saxena G, Chen J, Shalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem. 2010;285:3997–4005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. World C, Spindel ON, Berk BC. Thioredoxin-interacting protein mediates TRX1 translocation to the plasma membrane in response to tumor necrosis factor-alpha: a key mechanism for vascular endothelial growth factor receptor-2 transactivation by reactive oxygen species. Arterioscler Thromb Vasc Biol. 2011;31:1890–7.

    Article  CAS  PubMed  Google Scholar 

  12. Spindel ON, Yan C, Berk BC. Thioredoxin-interacting protein mediates nuclear-to-plasma membrane communication: role in vascular endothelial growth factor 2 signaling. Arterioscler Thromb Vasc Biol. 2012;32:1264–70.

    Article  CAS  PubMed  Google Scholar 

  13. Lane T, Flam B, Lockey R, Kolliputi N. TXNIP shuttling: missing link between oxidative stress and inflammasome activation. Front Physiol. 2013;4:50.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lee S, Min Kim S, Dotimas J, et al. Thioredoxin-interacting protein regulates protein disulfide isomerases and endoplasmic reticulum stress. EMBO molecular medicine 2014.

  15. Oslowski CM, Hara T, O’Sullivan-Murphy B, et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab. 2012;16:265–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lerner AG, Upton JP, Praveen PV, et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012;16:250–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Park SY, Shi X, Pang J, Yan C, Berk BC. Thioredoxin-interacting protein mediates sustained VEGFR2 signaling in endothelial cells required for angiogenesis. Arterioscler Thromb Vasc Biol. 2013;33:737–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Forrester MT, Seth D, Hausladen A, et al. Thioredoxin-interacting protein (Txnip) is a feedback regulator of S-nitrosylation. J Biol Chem. 2009;284:36160–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nadeau PJ, Charette SJ, Toledano MB, Landry J. Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H (2) O (2)-induced c-Jun NH (2)-terminal kinase activation and apoptosis. Mol Biol Cell. 2007;18:3903–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Xiang G, Seki T, Schuster MD, et al. Catalytic degradation of vitamin D up-regulated protein 1 mRNA enhances cardiomyocyte survival and prevents left ventricular remodeling after myocardial ischemia. J Biol Chem. 2005;280:39394–402.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Wang C, Gao K, et al. The ubiquitin ligase itch regulates apoptosis by targeting thioredoxin-interacting protein for ubiquitin-dependent degradation. J Biol Chem. 2010;285:8869–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ago T, Liu T, Zhai P, et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell. 2008;133:978–93.

    Article  CAS  PubMed  Google Scholar 

  23. He X, Ma Q. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol Pharmacol. 2012;82:887–97.

    Article  CAS  PubMed  Google Scholar 

  24. Shah A, Xia L, Goldberg H, Lee KW, Quaggin SE, Fantus IG. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J Biol Chem. 2013;288:6835–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mohamed IN, Hafez SS, Fairaq A, Ergul A, Imig JD, El-Remessy AB. Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet. Diabetologia. 2014;57:413–23.

    Article  CAS  PubMed  Google Scholar 

  26. Wang XQ, Nigro P, World C, Fujiwara K, Yan C, Berk BC. Thioredoxin interacting protein promotes endothelial cell inflammation in response to disturbed flow by increasing leukocyte adhesion and repressing Kruppel-like factor 2. Circ Res. 2012;110:560–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yamawaki H, Pan S, Lee RT, Berk BC. Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest. 2005;115:733–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Spindel ON, Burke RM, Yan C, Berk BC. Thioredoxin-interacting protein is a biomechanical regulator of Src activity: key role in endothelial cell stress fiber formation. Circ Res. 2014;114:1125–32.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, De Keulenaer GW, Lee RT. Vitamin D (3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem. 2002;277:26496–500.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshioka J, Imahashi K, Gabel SA, et al. Targeted deletion of thioredoxin-interacting protein regulates cardiac dysfunction in response to pressure overload. Circ Res. 2007;101:1328–38.

    Article  CAS  PubMed  Google Scholar 

  31. Yu Y, Xing K, Badamas R, Kuszynski CA, Wu H, Lou MF. Overexpression of thioredoxin-binding protein 2 increases oxidation sensitivity and apoptosis in human lens epithelial cells. Free Radic Biol Med. 2013;57:92–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wong RW, Hagen T. Mechanistic target of rapamycin (mTOR) dependent regulation of thioredoxin interacting protein (TXNIP) transcription in hypoxia. Biochem Biophys Res Commun. 2013;433:40–6.

    Article  CAS  PubMed  Google Scholar 

  33. Farrell MR, Rogers LK, Liu Y, Welty SE, Tipple TE. Thioredoxin-interacting protein inhibits hypoxia-inducible factor transcriptional activity. Free Radic Biol Med. 2010;49:1361–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Park YJ, Yoon SJ, Suh HW, et al. TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis. PLoS Pathog. 2013;9:e1003646.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Zhang H, Luo Y, Zhang W, et al. Endothelial-specific expression of mitochondrial thioredoxin improves endothelial cell function and reduces atherosclerotic lesions. Am J Pathol. 2007;170:1108–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Schulze PC, Liu H, Choe E, et al. Nitric oxide-dependent suppression of thioredoxin-interacting protein expression enhances thioredoxin activity. Arterioscler Thromb Vasc Biol. 2006;26:2666–72.

    Article  CAS  PubMed  Google Scholar 

  37. Shaked M, Ketzinel-Gilad M, Ariav Y, Cerasi E, Kaiser N, Leibowitz G. Insulin counteracts glucotoxic effects by suppressing thioredoxin-interacting protein production in INS-1E beta cells and in Psammomys obesus pancreatic islets. Diabetologia. 2009;52:636–44.

    Article  CAS  PubMed  Google Scholar 

  38. Sverdlov AL, Chan WP, Procter NE, Chirkov YY, Ngo DT, Horowitz JD. Reciprocal regulation of NO signaling and TXNIP expression in humans: Impact of aging and ramipril therapy. Int J Cardiol. 2013;168:4624–30.

    Article  PubMed  Google Scholar 

  39. Spindel ON, World C, Berk BC. Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxid Redox Signal. 2012;16:587–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Yoshioka J, Chutkow WA, Lee S, et al. Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. J Clin Invest. 2012;122:267–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Yoshioka J, Lee RT. Thioredoxin-interacting protein and myocardial mitochondrial function in ischemia-reperfusion injury. Trends Cardiovasc Med. 2014;24:75–80.

    Article  CAS  PubMed  Google Scholar 

  42. Shalev A, Pise-Masison CA, Radonovich M, et al. Oligonucleotide microarray analysis of intact human pancreatic islets: identification of glucose-responsive genes and a highly regulated TGFbeta signaling pathway. Endocrinology. 2002;143:3695–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–40.

    Article  CAS  PubMed  Google Scholar 

  44. Luo B, Li B, Wang W, et al. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc Drugs Ther. 2014;28:33–43.

    Article  CAS  PubMed  Google Scholar 

  45. Singh LP. The NLRP3 inflammasome and diabetic cardiomyopathy : editorial to: “Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model” by Beibei Luo et al. Cardiovasc Drugs Ther. 2014;28:5–6.

    Article  PubMed  Google Scholar 

  46. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science (New York, NY) 2010;327:296–300.

  47. Davis BK, Ting JP. NLRP3 has a sweet tooth. Nat Immunol. 2010;11:105–6.

    Article  CAS  PubMed  Google Scholar 

  48. Perrone L, Devi TS, Hosoya KI, Terasaki T, Singh LP. Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell death Dis. 2010;1:e65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Chen J, Cha-Molstad H, Szabo A, Shalev A. Diabetes induces and calcium channel blockers prevent cardiac expression of proapoptotic thioredoxin-interacting protein. Am J Physiol Endocrinol Metab. 2009;296:E1133–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Tan SM, Zhang Y, Cox AJ, Kelly DJ, Qi W. Tranilast attenuates the up-regulation of thioredoxin-interacting protein and oxidative stress in an experimental model of diabetic nephropathy nephrology, dialysis, transplantation official publication of the European dialysis and transplant association. Eur Ren Assoc. 2011;26:100–10.

    Google Scholar 

  51. Malmberg K, Ryden L, Hamsten A, Herlitz J, Waldenstrom A, Wedel H. Effects of insulin treatment on cause-specific one-year mortality and morbidity in diabetic patients with acute myocardial infarction DIGAMI study group diabetes insulin-glucose in acute myocardial infarction. Eur Heart J. 1996;17:1337–44.

    Article  CAS  PubMed  Google Scholar 

  52. Worthley MI, Holmes AS, Willoughby SR, et al. The deleterious effects of hyperglycemia on platelet function in diabetic patients with acute coronary syndromes mediation by superoxide production, resolution with intensive insulin administration. J Am Coll Cardiol. 2007;49:304–10.

    Article  CAS  PubMed  Google Scholar 

  53. Piwkowska A, Rogacka D, Audzeyenka I, Angielski S, Jankowski M. High glucose increases glomerular filtration barrier permeability by activating protein kinase G type Ialpha subunits in a Nox4-dependent manner. Exp Cell Res. 2014;320:144–52.

    Article  CAS  PubMed  Google Scholar 

  54. Ludwig DL, Kotanides H, Le T, Chavkin D, Bohlen P, Witte L. Cloning, genetic characterization, and chromosomal mapping of the mouse VDUP1 gene. Gene. 2001;269:103–12.

    Article  CAS  PubMed  Google Scholar 

  55. Oka S, Masutani H, Liu W, et al. Thioredoxin-binding protein-2-like inducible membrane protein is a novel vitamin D3 and peroxisome proliferator-activated receptor (PPAR) gamma ligand target protein that regulates PPARgamma signaling. Endocrinology. 2006;147:733–43.

    Article  CAS  PubMed  Google Scholar 

  56. Oka S, Yoshihara E, Bizen-Abe A, et al. Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function. Endocrinology. 2009;150:1225–34.

    Article  CAS  PubMed  Google Scholar 

  57. Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology. 2005;146:2397–405.

    Article  CAS  PubMed  Google Scholar 

  58. Masutani H, Yoshihara E, Masaki S, Chen Z, Yodoi J. Thioredoxin binding protein (TBP)-2/Txnip and alpha-arrestin proteins in cancer and diabetes mellitus. J Clin Biochem Nutr. 2012;50:23–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Han SH, Jeon JH, Ju HR, et al. VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene. 2003;22:4035–46.

    Article  CAS  PubMed  Google Scholar 

  60. Masaki S, Masutani H, Yoshihara E, Yodoi J. Deficiency of thioredoxin binding protein-2 (TBP-2) enhances TGF-beta signaling and promotes epithelial to mesenchymal transition. PLoS One. 2012;7:e39900.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Robinson KA, Brock JW, Buse MG. Posttranslational regulation of thioredoxin-interacting protein. J Mol Endocrinol. 2013;50:59–71.

    Article  CAS  PubMed  Google Scholar 

  62. Wu N, Zheng B, Shaywitz A, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell. 2013;49:1167–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Viollet B, Guigas B, Leclerc J, et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta physiologica (Oxford, England) 2009;196:81–98.

  64. Shaked M, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G. AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells. PLoS One. 2011;6:e28804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Nishizawa K, Nishiyama H, Matsui Y, et al. Thioredoxin-interacting protein suppresses bladder carcinogenesis. Carcinogenesis. 2011;32:1459–66.

    Article  CAS  PubMed  Google Scholar 

  66. Kwon HJ, Won YS, Suh HW, et al. Vitamin D3 upregulated protein 1 suppresses TNF-alpha-induced NF-kappaB activation in hepatocarcinogenesis. Journal of immunology (Baltimore, Md : 1950) 2010;185:3980–9.

  67. Ellis L, Hammers H, Pili R. Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett. 2009;280:145–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Lee JH, Jeong EG, Choi MC, et al. Inhibition of histone deacetylase 10 induces thioredoxin-interacting protein and causes accumulation of reactive oxygen species in SNU-620 human gastric cancer cells. Macromolecule Cells. 2010;30:107–12.

    Article  CAS  Google Scholar 

  69. Chen J, Saxena G, Mungrue IN, Lusis AJ, Shalev A. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes. 2008;57:938–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Shao W, Yu Z, Fantus IG, Jin T. Cyclic AMP signaling stimulates proteasome degradation of thioredoxin interacting protein (TxNIP) in pancreatic beta-cells. Cell Signal. 2010;22:1240–6.

    Article  CAS  PubMed  Google Scholar 

  71. Parikh H, Carlsson E, Chutkow WA, et al. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 2007;4:e158.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Chen J, Couto FM, Minn AH, Shalev A. Exenatide inhibits beta-cell apoptosis by decreasing thioredoxin-interacting protein. Biochem Biophys Res Commun. 2006;346:1067–74.

    Article  CAS  PubMed  Google Scholar 

  73. Chai TF, Hong SY, He H, et al. A potential mechanism of metformin-mediated regulation of glucose homeostasis: inhibition of thioredoxin-interacting protein (Txnip) gene expression. Cell Signal. 2012;24:1700–5.

    Article  CAS  PubMed  Google Scholar 

  74. Chirkov YY, Horowitz JD. Impaired tissue responsiveness to organic nitrates and nitric oxide: a new therapeutic frontier? Pharmacol Ther. 2007;116:287–305.

    Article  CAS  PubMed  Google Scholar 

  75. Ngo DT, Stafford I, Kelly DJ, et al. Vitamin D (2) supplementation induces the development of aortic stenosis in rabbits: interactions with endothelial function and thioredoxin-interacting protein. Eur J Pharmacol. 2008;590:290–6.

    Article  CAS  PubMed  Google Scholar 

  76. Ngo DT, Stafford I, Sverdlov AL, et al. Ramipril retards development of aortic valve stenosis in a rabbit model: mechanistic considerations. Br J Pharmacol. 2011;162:722–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Wu J, Lin H, Liu D, et al. The protective effect of telmisartan in Type 2 diabetes rat kidneys is related to the downregulation of thioredoxin-interacting protein. J Endocrinol Investig. 2013;36:453–9.

    CAS  Google Scholar 

  78. Ngo DT, Drury NE, Pagano D, Frenneaux MP, Horowitz JD. How does perhexiline maleate modulate myocardial energetics and ameliorate redox stress? Circulation. 2011;12, A14461.

    Google Scholar 

  79. Liberts EA, Willoughby SR, Kennedy JA, Horowitz JD. Effects of perhexiline and nitroglycerin on vascular, neutrophil and platelet function in patients with stable angina pectoris. Eur J Pharmacol. 2007;560:49–55.

    Article  CAS  PubMed  Google Scholar 

  80. Lee L, Campbell R, Scheuermann-Freestone M, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–8.

    Article  CAS  PubMed  Google Scholar 

  81. Balgi AD, Fonseca BD, Donohue E, et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One. 2009;4:e7124.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Xu G, Chen J, Jing G, Shalev A. Preventing beta-cell loss and diabetes with calcium channel blockers. Diabetes. 2012;61:848–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Tarif N, Bakris GL. Preservation of renal function: the spectrum of effects by calcium-channel blockers nephrology, dialysis, transplantation : official publication of the European dialysis and transplant association. Eur Ren Assoc. 1997;12:2244–50.

    CAS  Google Scholar 

  84. Cooper-Dehoff R, Cohen JD, Bakris GL, et al. Predictors of development of diabetes mellitus in patients with coronary artery disease taking antihypertensive medications (findings from the INternational VErapamil SR-Trandolapril STudy [INVEST]). Am J Cardiol. 2006;98:890–4.

    Article  CAS  PubMed  Google Scholar 

  85. Burger AJ, Mannino S. 5-Fluorouracil-induced coronary vasospasm. Am Heart J. 1987;114:433–6.

    Article  CAS  PubMed  Google Scholar 

  86. Connolly S, Scott P, Cochrane D, Harte R. A case report of 5-fluorouracil-induced coronary artery vasospasm. Ulster Med J. 2010;79:135–6.

    PubMed Central  PubMed  Google Scholar 

  87. Kim SM, Kwak CH, Lee B, et al. A case of severe coronary spasm associated with 5-fluorouracil chemotherapy. Korean J Intern Med. 2012;27:342–5.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Yamaguchi F, Kamitori K, Sanada K, et al. Rare sugar D-allose enhances anti-tumor effect of 5-fluorouracil on the human hepatocellular carcinoma cell line HuH-7. J Biosci Bioeng. 2008;106:248–52.

    Article  CAS  PubMed  Google Scholar 

  89. Sandhu SK, Yap TA, de Bono JS. The emerging role of poly (ADP-Ribose) polymerase inhibitors in cancer treatment. Curr Drug Targets. 2011;12:2034–44.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang LQ, Qi GX, Jiang DM, Tian W, Zou JL. Increased poly (ADP-ribosyl) ation in peripheral leukocytes and the reperfused myocardium tissue of rats with ischemia/reperfusion injury: prevention by 3-aminobenzamide treatment. Shock (Augusta, Ga) 2012;37:492–500.

  91. Yamazaki K, Tanaka S, Sakata R, et al. Protective effect of cardioplegia with poly (ADP-ribose) polymerase-1 inhibitor against myocardial ischemia-reperfusion injury: in vitro study of isolated rat heart model. J Enzym Inhib Med chem. 2013;28:143–7.

    Article  CAS  Google Scholar 

  92. Tao R, Kim SH, Honbo N, Karliner JS, Alano CC. Minocycline protects cardiac myocytes against simulated ischemia-reperfusion injury by inhibiting poly (ADP-ribose) polymerase-1. J Cardiovasc Pharmacol. 2010;56:659–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Jung KA, Kwak MK. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules (Basel, Switzerland) 2010;15:7266–91.

  94. de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369:2492–503.

    Article  PubMed  Google Scholar 

  95. Rogers NM, Stephenson MD, Kitching AR, Horowitz JD, Coates PT. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br J Pharmacol. 2012;166:194–209.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Nivet-Antoine V, Cottart CH, Lemarechal H, et al. trans-Resveratrol downregulates Txnip overexpression occurring during liver ischemia-reperfusion. Biochimie 2010;92:1766–71.

  97. Mousa SA, Gallati C, Simone T, et al. Dual targeting of the antagonistic pathways mediated by Sirt1 and TXNIP as a putative approach to enhance the efficacy of anti-aging interventions. Aging. 2009;1:412–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Butler LM, Zhou X, Xu WS, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A. 2002;99:11700–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Zhou J, Bi C, Cheong LL, et al. The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood. 2011;118:2830–9.

    Article  PubMed  Google Scholar 

  100. Sipahi I, Debanne SM, Rowland DY, Simon DI, Fang JC. Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. lancet Oncol. 2010;11:627–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Rao GA, Mann JR, Bottai M, et al. Angiotensin receptor blockers and risk of prostate cancer among United States veterans. J Clin Pharmacol. 2013;53:773–8.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Sorensen GV, Ganz PA, Cole SW, et al. Use of beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and risk of breast cancer recurrence: a Danish nationwide prospective cohort study. Int J Clin Oncol : off J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:2265–72.

    Article  Google Scholar 

  103. Bhaskaran K, Douglas I, Evans S, van Staa T, Smeeth L. Angiotensin receptor blockers and risk of cancer: cohort study among people receiving antihypertensive drugs in UK General Practice Research Database. BMJ (Clinical research ed) 2012;344:e2697.

  104. Cha-Molstad H, Xu G, Chen J, et al. Calcium channel blockers act through nuclear factor Y to control transcription of key cardiac genes. Mol Pharmacol. 2012;82:541–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Health and Medical Research Council (NHMRC) of Australia and the Queen Elizabeth Hospital Research Foundation to JDH. CRC is a recipient of NHMRC postgraduate scholarship; SL and NEKP are recipients of University of Adelaide postgraduate scholarships. The authors have no other relevant conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Horowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, CR., Chan, W.P.A., Nguyen, T.H. et al. Thioredoxin-Interacting Protein: Pathophysiology and Emerging Pharmacotherapeutics in Cardiovascular Disease and Diabetes. Cardiovasc Drugs Ther 28, 347–360 (2014). https://doi.org/10.1007/s10557-014-6538-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6538-5

Keywords

Navigation