Skip to main content
Log in

A comparative brief on conducted electrical weapon safety

Eine vergleichende Sicherheitsanalyse von Elektroschockdistanzwaffen

  • review
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

The variety and high number of published research articles on conducted electrical weapons (CEW) provides a detailed, yet in some parts inconclusive overview of medical aspects of CEW. Due to different research approaches and the use of dissimilar test subjects, an assessment of possible health risks of CEW is limited. The present work provides a brief on CEW safety based on currently available animal, computer and human research data. Using the medical database PubMed, articles published on this topic are critically evaluated and compared with each other. Special focuses are the differences and similarities of human and animal research as well as computer simulation programs. The authors explain why some studies are more reliable than others and give their expert opinion on the safety of CEW. The body of data that have been reviewed provides reasonable support for the safety of CEW.

Zusammenfassung

Die Vielfalt und hohe Anzahl der veröffentlichten Forschungsergebnisse zum Thema der Elektroschockdistanzwaffen („conducted electrical weapons“, CEW) liefert einen detaillierten, aber nicht immer eindeutigen Überblick über medizinische Aspekte dieser Geräte. Aufgrund unterschiedlicher Forschungsansätze und der Verwendung andersartiger Versuchsobjekte ist eine allgemeingültige und v. a. auch auf spezielle Einsatzszenarien übertragbare Einschätzung potenzieller Gesundheitsrisiken von CEW nur begrenzt möglich. Die vorliegende Arbeit gibt einen Überblick über die CEW-Sicherheit auf der Grundlage von derzeit verfügbaren Tier‑, Computer- und humanen Forschungsdaten. Unter Nutzung der medizinischen Datenbank PubMed werden zu diesem Thema publizierte Artikel kritisch bewertet und miteinander verglichen. Besondere Schwerpunkte sind die Unterschiede und Gemeinsamkeiten von Human- und Tierforschung sowie von Computersimulationsprogrammen. Die Autoren erklären, warum ihrer Meinung nach manche Studien zuverlässiger sind als andere und geben eine Einschätzung zur Sicherheit von CEW ab. Die untersuchten Daten lassen die Sicherheit von CEW vertretbar erscheinen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pasquier M, Carron PN, Vallotton L, Yersin B. Electronic control device exposure: a review of morbidity and mortality. Ann Emerg Med. 2011;58:177–88.

    Google Scholar 

  2. Ho J, Dawes D, Miner J, Kunz SN, Nelson R, Williamson C, Sweeney J. Conducted electrical weapon incapacitation during a goal-directed task as a function of probe spread. Forensic Sci Med Pathol. 2012;8:358–66.

    PubMed  Google Scholar 

  3. Kroll MW. Physiology and pathology of TASER electronic control devices. J Forensic Leg Med. 2009;16:173–7.

    PubMed  Google Scholar 

  4. Stopyra JP, Ritter SI, Beatty J, Johnson JC, Kleiner DM, Winslow JE 3rd, Gardner AR, Bozeman WP. A TASER conducted electrical weapon with cardiac biomonitoring capability: proof of concept and initial human trial. J Forensic Leg Med. 2016;43:48–52.

    PubMed  Google Scholar 

  5. Clarke C, Andrews SP. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER law enforcement electronic control device. Sci Justice. 2014;54:412–20.

    CAS  PubMed  Google Scholar 

  6. Kunz SN, Adamec J, Zinka B, Münzel D, Noel PB, Eichner S, Manthei A, Grove N, Graw M, Peschel O. Wound ballistic evaluation of the TASER XREP ammunition. Int J Legal Med. 2013;127:119–26.

    PubMed  Google Scholar 

  7. Koscove EM. The taser weapon: a new emergency medicine problem. Ann Emerg Med. 1985;14:1205–8.

    CAS  PubMed  Google Scholar 

  8. Stopyra JP, Winslow JE, Fitzgerald DM, Bozeman WP. Intracardiac electrocardiographic assessment of precordial TASER shocks in human subjects: a pilot study. J Forensic Leg Med. 2017;52:70–4.

    PubMed  Google Scholar 

  9. Madea M. Leserbrief zum Beitrag Elektrowaffe ADVANCED TASER M26. Rechtsmedizin. 2003;13:114.

    Google Scholar 

  10. Bux R, Andresen D, Rothschild MA. Elektrowaffe ADVANCED TASER M 26. Funktionsweise, Wirksamkeit und Kasuistik. Rechtsmedizin. 2002;12:207–13.

    Google Scholar 

  11. Kunz SN, Monticelli F, Kaiser C. Death by conducted electrical weapons. Diagnosis by exclusion? Rechtsmedizin. 2012;22:369–73.

    Google Scholar 

  12. Fieseler S, Zinka B, Peschel O, Kunz SN. Elektrowaffe Taser® – Funktion, Wirkung, kritische Aspekte. Rechtsmedizin. 2011;21:535–40.

    Google Scholar 

  13. Kunz SN, Adamec J. Cardiac aspects of conducted electrical weapons (CEW). Rechtsmedizin. 2017;27:79–86.

    Google Scholar 

  14. Kunz SN, Grove C. Risikoeinschätzung von Elektroschockdistanzwaffen – eine Übersichtsarbeit aus gerichtsärztlicher Sicht. SIAK J. 2015;1:94–101.

    Google Scholar 

  15. Kunz SN, Grove C, Monticelli F. Medizinische Aspekte gängiger nicht-letaler Wirkmittel. Wien Med Wochenschr. 2014;164:103–8.

    PubMed  Google Scholar 

  16. Kunz SN. Blut, Schweiβ und Tränengas. Ärzte Woche. 2016;36:4–6.

    Google Scholar 

  17. Criscione JC, Kroll MW. Incapacitation recovery times from a conductive electrical weapon exposure. Forensic Sci Med Pathol. 2014;10:203–7.

    PubMed  Google Scholar 

  18. Dawes DM, Ho J, Miner J. The neuroendocrine effects of the TASER X26: a brief report. Forensic Sci Int. 2009;183:14–9.

    CAS  PubMed  Google Scholar 

  19. Dawes DM, Ho JD. Re: Myocardial infarction after TASER exposure. J LA Sate Med Soc 2010; 162: 291–295. J La State Med Soc. 2011;163:64. author reply 66.

    PubMed  Google Scholar 

  20. Dawes DM, Ho JD, Reardon RF, Miner JR. Echocardiographic evaluation of TASER X26 probe deployment into the chest of human volunteers. Am J Emerg Med. 2010;28:49–55.

    PubMed  Google Scholar 

  21. Dawes DM, Ho JD, Reardon RF, Miner JR. The cardiovascular, respiratory, and metabolic effects of a long duration electronic control device exposure in human volunteers. Forensic Sci Med Pathol. 2010;6:268–74.

    PubMed  Google Scholar 

  22. Dawes DM, Ho JD, Reardon RF, Strote SR, Nelson RS, Lundin EJ, Orozco BS, Kunz SN, Miner JR. The respiratory, metabolic, and neuroendocrine effects of a new generation electronic control device. Forensic Sci Int. 2011;207:55–60.

    PubMed  Google Scholar 

  23. Dawes DM, Ho JD, Readon RF, Sweeney JD, Miner JR. The physiologic effects of multiple simultaneous electronic control device discharges. West J Emerg Med. 2010;11:49–56.

    PubMed  PubMed Central  Google Scholar 

  24. Dawes DM, Ho JD, Sweeney JD, Lundin EJ, Kunz SN, Miner JR. The effect of an electronic control device on muscle injury as determined by creatine kinase enzyme. Forensic Sci Med Pathol. 2011;7:3–8.

    CAS  PubMed  Google Scholar 

  25. Dawes DM, Ho JD, Vincent AS, Nystrom PC, Moore JC, Steinberg LW, Tilton AM, Brave MA, Berris MS, Miner JR. The neurocognitive effects of simulated use-of-force scenarios. Forensic Sci Med Pathol. 2014;10:9–17.

    PubMed  Google Scholar 

  26. Ho HJ, Dawes DM, Reardon RF, Lapine AL, Dolan BJ, Lundin EJ, Miner JR. Echocardiographic evaluation of a TASER-X-26 application in the ideal human cardiac axis. Acad Emerg Med. 2008;15:838–44.

    PubMed  Google Scholar 

  27. Ho JD, Dawes DM, Chang RJ, Nelson RS, Miner JR. Physiologic effects of a new-generation conducted electrical weapon on human volunteers. J Emerg Med. 2014;46:428–35.

    PubMed  Google Scholar 

  28. Ho JD, Dawes DM, Heegaard WG, Miner JR. Human research review of the TASER electronic control device. Conf Proc IEEE Eng Med Biol Soc. 2009; https://doi.org/10.1109/IEMBS.2009.5334540.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ho JD, Dawes DM, Reardon RF, Strote SR, Kunz SN, Nelson RS, Lundin EJ, Orozco BS, Miner JR. Human cardiovascular effects of a new generation conducted electrical weapon. Forensic Sci Int. 2011;204:50–7.

    PubMed  Google Scholar 

  30. Dawes DM, Ho J, Moore JC, Laudenbach AP, Reardon RF, Miner JR. An evaluation of two conducted electrical weapons using a swine comparative cardiac safety model. Forensic Sci Med Pathol. 2014;10:329–35.

    PubMed  Google Scholar 

  31. Dawes DM, Ho JD, Moore JC, Miner JR. Erratum to: an evaluation of two conducted electrical weapons and two probe designs using a swine comparative cardiac safety model. Forensic Sci Med Pathol. 2013;9:343.

    Google Scholar 

  32. Jenkins DM Jr, Murray WB, Kennett MJ, Hughes EL, Werner JR. The effect of continuous application of the TASER X26 waveform on Sus scrofa. J Forensic Sci. 2013;58:684–92.

    PubMed  Google Scholar 

  33. Khaja A, Govindarajan G, McDaniel W, Flaker G. Cardiac safety of conducted electrical devices in pigs and their effect on pacemaker function. Am J Emerg Med. 2011;29:1089–96.

    PubMed  Google Scholar 

  34. Mc Daniel W, Stratbucker R, Smith R. Surface application of taser stun guns does not cause ventricular fibrillation in canines. Proc Annu Int Conf IEEE Eng Med Biol Soc 2000. 2000.

    Google Scholar 

  35. Kunz SN, Aronshtam Y, Tränkler HR, Kraus S, Graw M, Peschel O. Cardiac changes due to electronic control devices? A computer-based analysis of electrical effects at the human heart caused by an ECD pulse applied to the body’s exterior. J Forensic Sci. 2014;59:659–64.

    PubMed  Google Scholar 

  36. Kroll MW, Panescu D, Carver M, Kroll RM, Hinz AF. Cardiac effects of varying pulse charge and polarity of TASER conducted electrical weapons. Conf Proc IEEE Eng Med Biol Soc 2009. 2009. pp. 3195–8.

    Google Scholar 

  37. Panescu D, Kroll M, Iverson C, Brave M. The sternum as an electrical shield. Conf Proc IEEE Eng Med Biol Soc 2014. 2014. pp. 4464–70.

    Google Scholar 

  38. Panescu D, Kroll M, Brave M. Cardiac fibrillation risks with TASER conducted electrical weapons. Conf Proc IEEE Eng Med Biol Soc 2015. 2015. pp. 323–9.

    Google Scholar 

  39. Panescu D, Kroll MW, Stratbucker RA. Theoretical possibility of ventricular fibrillation during use of TASER neuromuscular incapacitation devices. Conf Proc IEEE Eng Med Biol Soc. 2008. 2008. pp. 5671–4.

    Google Scholar 

  40. Buchanan K, Muir RLM, Stokes K, Barone K. Electronic defense weapon analysis and findings. State of Connecticut. Institute for Municipal & Regional Policy. Central Connecticut State University. 2015. http://www.ccsu.edu/imrp/projects/files/EDW.pdf. Accessed 13 Oct 2016.

    Google Scholar 

  41. Leitgeb N. Cardiac fibrillation risk of taser weapons. Health Phys. 2014;106:652–9.

    CAS  PubMed  Google Scholar 

  42. Nanthakumar K, Billingsley IM, Masse S, Dorian P, Cameron D, Chauhan VS, Downar E, Sevaptsidis E. Cardiac electrophysiological consequence of neuromuscular incapacitating device discharges. J Am Coll Cardiol. 2006;48:798–804.

    PubMed  Google Scholar 

  43. Valentino DJ, Walter RJ, Dennis AJ, Margeta B, Starr F, Nagy KK, Bokari F, Wiley DE, Joseph KT, Roberts RR. Taser X26 discharge in swine: ventricular rhythm capture is dependent on discharge vector. J Trauma. 2008;65:1478–85.

    PubMed  Google Scholar 

  44. Dennis A, Valentino D, Walter R, Nagy K, Winners J, Bokhari F, Wiley D, Joseph K, Roberts R. Acute effects of TASER X26 discharges in a swine model. J Trauma. 2007;63:581–90.

    PubMed  Google Scholar 

  45. Nanthakumar K, Massé S, Umapathy K, Dorian P, Sevaptsidis E, Waxman M. Cardiac stimulation with high voltage discharge from stun guns. CMAJ. 2008;178:1451–7.

    PubMed  PubMed Central  Google Scholar 

  46. Walter RJ, Dennis AJ, Valentino DJ, Margeta B, Nagy KK, Bokhari F, Wiley DE, Joseph KT, Roberts RR. TASER X26 discharge in swine produce potentially fatal ventricular arrhythmias. Acad Emerg Med. 2008;15:66–73.

    PubMed  Google Scholar 

  47. Wu JY, Sun H, O’Rourke AP, Huebner SM, Rahko PS, Will JA, Webster JG. Taser blunt probe dart-to-heart distance causing ventricular fibrillation in pigs. IEEE Trans Biomed Eng. 2008;55:2768–71.

    PubMed  Google Scholar 

  48. VanMeenen KM, Lavietes MH, Cherniack NS, Bergen MT, Teichman R, Servatius RJ. Respiratory and cardiovascular response during electronic control device exposure in law enforcement trainees. Front Physiol. 2013;4:78.

    PubMed  PubMed Central  Google Scholar 

  49. Vilke GM, Sloane CM, Bouton KD, Kolkhorst FW, Levine SD, Neuman TS, Castillo EM, Chan TC. Physiological effects of a conducted electrical weapon on human subjects. Ann Emerg Med. 2007;50:569–75.

    PubMed  Google Scholar 

  50. Vilke GM, Sloane CM, Suffecool A, Kolkhorst FW, Neuman TS, Castillo EM, Chan TC. Physiologic effects of the TASER after exercise. Acad Emerg Med. 2009;16:704–10.

    PubMed  Google Scholar 

  51. Ho JD, Dawes DM, Bultman LL, Thacker JL, Skinner LD, Bahr JM, Johnson MA, Miner JR. Respiratory effect of prolonged electrical weapon application on human volunteers. Acad Emerg Med. 2007;14:197–201.

    PubMed  Google Scholar 

  52. Ho J, Lapine A, Joing S, Reardon R, Dawes D. Confirmation of respiration during trapezial conducted electrical weapon application. Acad Emerg Med. 2008;15:398.

    PubMed  Google Scholar 

  53. Esquivel AO, Dawe EJ, Sala-Mercado JA, Hammond RL, Bir CA. The physiologic effects of a conducted electrical weapon in swine. Ann Emerg Med. 2007;50:576–83.

    PubMed  Google Scholar 

  54. Jauchem JR, Seaman RL, Fines DA. Survival of anesthetized Sus scrofa fter cycling (7 s on/3 s off) exposures to a TASER X26 electronic device for three minutes. Am J Forensic Med Pathol. 2011;32:124–30.

    PubMed  Google Scholar 

  55. Jauchem JR, Sherry CJ, Fines DA, Cook MC. Acidosis, lactate, electrolytes, muscle enzymes, and other factors in the blood of Sus scrofa following repeated TASER exposures. Forensic Sci Int. 2006;161:20–30.

    CAS  PubMed  Google Scholar 

  56. Jauchem JR, Cook MC, Beason CW. Blood factors of Sus scrofa following a series of three TASER electronic control device exposures. Forensic Sci Int. 2008;175:166–70.

    CAS  PubMed  Google Scholar 

  57. Ho JD, Miner JR, Lakireddy DR, Bultman LL, Heegard WG. Cardiovascular and physiologic effects of conducted electrical weapon discharge in resting adults. Acad Emerg Med. 2006;13:589–95.

    PubMed  Google Scholar 

  58. Ho JD, Dawes DM, Bultmann LL, Moscati RM, Janchar TA, Miner JR. Prolonged TASER use on exhausted humans does not worsen markers of acidosis. Am J Emerg Med. 2009;27:413–8.

    PubMed  Google Scholar 

  59. Ho JD, Dawes DM, Cole JB, Hottinger JC, Overton KG, Miner JR. Lactate and pH evaluation in exhausted humans with prolonged TASER X26 exposure or continued exertion. Forensic Sci Int. 2009;190:80–6.

    CAS  PubMed  Google Scholar 

  60. Ideker RE, Dosdall DJ. Can the direct cardiac effects of the electric pulses generated by the TASER X26 cause immediate or delayed sudden cardiac arrest in normal adults? Am J Forensic Med Pathol. 2007;28:195–201.

    PubMed  Google Scholar 

  61. Hoffa M, Ludwig C. Einige neue Versuche über Herzbewegungen. Z Ration Med. 1850;9:107–44.

    Google Scholar 

  62. Kunz SN, Brandtner H, Monticelli F. Electrical current in the human body – effect, fields of application and forensic evidence. Rechtsmedizin. 2012;6:495–505.

    Google Scholar 

  63. International Electrotechnical Commission. Household and similar electrical appliances—safety—part 2—76: particular requirements for electric fence energizers. 2.1 ed. IEC 60335-2-76. Geneva: IEC; 2012.

    Google Scholar 

  64. International Electrotechnical Commission.. Medical electrical equipment—part 1: general requirements for basic safety and essential performance. IEC 60601-1:2005+A1. Geneva: IEC; 2012.

    Google Scholar 

  65. International Electrotechnical Commission. Effects of current on human beings and livestock: part 1—general aspects. IEC 60479-1. Geneva: IEC; 2005.

    Google Scholar 

  66. International Electrotechnical Commission. Effects of current on human beings and livestock: part 2—special aspects. IEC 60479-2. Geneva: IEC; 2007.

    Google Scholar 

  67. Nimunkar AJ, Webster JG. Safety of pulsed electric devices. Physiol Meas. 2009;30:101–14.

    PubMed  Google Scholar 

  68. Panescu D, Nerheim M, Kroll M. Electrical safety of conducted electrical weapons relative to requirements of relevant electrical standards. Conf Proc IEEE Eng Med Biol Soc 2013. 2013. pp. 5342–7.

    Google Scholar 

  69. Chandrasekera PC, Pippin JJ. The human subject: an integrative animal model for the 21(st) century heart failure research. Am J Transl Res. 2015;7:1636–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Langley G. The validity of animal experiments in medical research. RSDA. 2009;1:161–8.

    Google Scholar 

  71. Pippin JJ. Taser research in pigs not helpful. J Am Coll Cardiol. 2007;49:731–2.

    PubMed  Google Scholar 

  72. Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I. Where is the evidence that animal research benefits humans? BMJ. 2004;328:514–7.

    PubMed  PubMed Central  Google Scholar 

  73. Nickel R, Schummer A, Seiferle E, editors. Kreislaufsystem, Haut und Hautorgane. 4th ed. Lehrbuch der Anatomie der Haustiere, Vol. 3. Stuttgart: Parey; 2004. pp. 53–6.

    Google Scholar 

  74. Allison JS, Qin H, Dosdall DJ, Huang J, Newton JC, Allred JD, Smith WM, Ideker RE. The transmural activation sequence in porcine and canine left ventricle is markedly different during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol. 2007;18:1306–12.

    PubMed  Google Scholar 

  75. Brave MA, Lakkireddy D, Kroll M, Panescu D. Validity of the small swine model for human electrical safety risks. Conf Proc IEEE Eng Med Biol Soc. 2016. 2016. pp. 2343–8.

    Google Scholar 

  76. Hamlin RL, Burton RR, Leverett SD, Burns JW. Ventricular activation process in minipigs. J Electrocardiol. 1975;8:113–6.

    CAS  PubMed  Google Scholar 

  77. Howe BB, Fehn PA, Pensinger RR. Comparative anatomical studies of the coronary arteries of canine and porcine hearts. I. Free ventricular walls. Acta Anat (Basel). 1968;71:13–21.

    CAS  Google Scholar 

  78. Kano M, Toyoshi T, Iwasaki S, Kato M, Shimizu M, Ota T. QT PRODACT: usability of miniature pigs in safety pharmacology studies: assessment for drug-induced QT interval prolongation. J Pharmacol Sci. 2005;99:501–11.

    CAS  PubMed  Google Scholar 

  79. Kroll MW, Calkins H, Luceri RM, Graham MA, Heegaard WG. Sensitive swine and TASER electronic control devices. Acad Emerg Med. 2008;15:695–6.

    PubMed  Google Scholar 

  80. Schnabel PA, Richter J, Schmiedl A, Bach F, Barthels U, Ramsauer B, Gebhard MM, Bretschneider HJ. Patterns of structural deterioration due to ischemia in Purkinje fibres and different layers of the working myocardium. Thorac Cardiovasc Surg. 1991;39:174–82.

    CAS  PubMed  Google Scholar 

  81. Lakkireddy D, Wallick D, Verma A, Ryschon K, Kowalewski W, Wazni O, Butany J, Martin D, Tchou PJ. Cardiac effects of electrical stun guns: does position of barbs contact make a difference? Pacing Clin Electrophysiol. 2008;31:398–408.

    PubMed  Google Scholar 

  82. Eastman AL, Metzger JC, Pepe PE, Benitez FL, Decker J, Rinnert KJ, Field CA, Friese RS. Conducted electrical devices: a prospective, population-based study of the medical safety of law enforcement use. J Trauma. 2008;64:1567–72.

    PubMed  Google Scholar 

  83. Payne-James JJ, Green P, Johmston A. Trends in less-lethal use of force techniques by police services within England and Wales: 2007–2011. Forensic Sci Med Pathol. 2014;10:50–5.

    PubMed  Google Scholar 

  84. Government UK. Home office. Figures on the reported and recorded uses of TASER by police forces in England and Wales. 2015. http://data.gov.uk/dataset/recorded-use-taser-england-wales. Accessed 26 Dec 2016.

    Google Scholar 

  85. Bozeman WP. Additional information on taser safety. Ann Emerg Med. 2009;54:758–9.

    PubMed  Google Scholar 

  86. Walcott GP, Kroll MW, Ideker RE. Ventricular fibrillation: are swine a sensitive species? J Interv Card Electrophysiol. 2015;42:83–9.

    PubMed  Google Scholar 

  87. Kroll MW, Lakkireddy DR, Stone JR, Luceri RM. TASER electronic control devices and cardiac arrests: coincidental or causal? Circulation. 2014;129:93–100. Supplement.

    PubMed  Google Scholar 

  88. Brewer J, Kroll M. Field statistic overview. In: Kroll M, Ho J, editors. TASER conducted electrical weapons: physiology, pathology, and law. New York City: Springer-Kluwer; 2009. pp. 283–300.

    Google Scholar 

  89. Ho J, Heegaard WG, Dawes DM, Natarajan S, Reardon RF, Miner JR. Unexpected arrest-related deaths in america: 12 months of open source surveillance. West J Emerg Med. 2009;10:68–73.

    PubMed  PubMed Central  Google Scholar 

  90. Rita I. Risikoanalyse TASER-X26-Distanzanwendung, Untersuchung in Bezug auf Stromstärken. Graz: Institut für Health Care Engineering, TU Graz; 2009.

    Google Scholar 

  91. Baldwin DE, Nagarakanti R, Hardy SP, Jain N, Borne DM, England AR, Nix ED, Daniels CL, Abide WP Jr, Glancy DI. Myocardial infarction after taser exposure. J La State Med Soc. 2010;162:291–2. 294–5.

    PubMed  Google Scholar 

  92. Kornblum RN, Reddy SK. Effects of the taser in fatalities involving police confrontation. J Forensic Sci. 1991;36:434–8.

    CAS  PubMed  Google Scholar 

  93. Naunheim RS, Treaster M, Aubin C. Ventricular fibrillation in a man shot with a taser. Emerg Med J. 2010;27:645–6.

    PubMed  Google Scholar 

  94. Strote J, Range Hutson H. Taser use in restraint-related deaths. Prehosp Emerg Care. 2006;10:447–50.

    PubMed  Google Scholar 

  95. Zipes DP. Sudden cardiac arrest and death following application of shocks from a TASER electronic control device. Circulation. 2012;125:2417–22.

    PubMed  Google Scholar 

  96. Haegli LM, Sterns LD, Adam DC, Leather RA. Effect of a taser shot to the chest of a patient with an implantable defibrillator. Heart Rhythm. 2006;3:339–41.

    Google Scholar 

  97. Lakkireddy D, Khasnis A, Antenacci J, Ryshcon K, Chung MK, Wallick D, Kowalewski W, Patel D, Micochova H, Kondur A, Vacek J, Martin D, Natale A, Tchou P. Do electrical stun guns (TASER X26) affect the functional integrity of implanted pacemakers and defibrillators? Europace. 2007;9:551–6.

    PubMed  Google Scholar 

  98. Leitgeb N, Niedermayr F, Neubauer R. Interference of implanted cardiac pacemakers with TASER X26 dart mode application. Biomed Tech (Berl). 2012;2057:201–6.

    Google Scholar 

  99. Vanga SR, Bommana S, Kroll MW, Swerdlow C, Lakkireddy D. Taser conducted electrical weapons and implanted pacemakers and defibrillators. ConfProc IEEE Eng Med Biol Soc 2009. 2009. pp. 3199–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian N. Kunz.

Ethics declarations

Conflict of interest

This paper is a result of literature search, which was not funded. S.N. Kunz is a member of the scientific medical advisory board of Axon Int. (fka TASER). J. Adamec declares that he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunz, S.N., Adamec, J. A comparative brief on conducted electrical weapon safety. Wien Med Wochenschr 169, 185–192 (2019). https://doi.org/10.1007/s10354-018-0616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-018-0616-4

Keywords

Schlüsselwörter

Navigation