Skip to main content

Advertisement

Log in

Cognitive impairment in elderly patients with rheumatic disease and the effect of disease-modifying anti-rheumatic drugs

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Recent development of biologic disease-modifying anti-rheumatic drugs (DMARDs) has led to better control of disease activity among patients with chronic rheumatological diseases. Many patients with rheumatic disease are living longer, adding to the growing elderly population. Rheumatic diseases, most notably rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), are known to increase the risk of cognitive impairment. Systemic inflammation associated with chronic rheumatological diseases has been postulated to be key driver of cognitive decline. Recent development of classic and biologic DMARDs have led to better control of disease activity among patients with rheumatic conditions. It is proposed that strict control of systemic inflammation will significantly lower the risk of cognitive impairment among patients with rheumatic disease. The impact of classic DMARDs on cognitive function appears to be variable. On the other hand, biologic DMARDs, specifically antitumor necrosis factor (TNF) drugs (i.e., etanercept), have been shown to significantly lower the risk of dementia. Experimental studies on IL-1, IL-6, and B and T cell blockade are promising. However, clinical data is limited. Preclinical studies on targeted therapies, specifically JAK/STAT inhibitors, also show promising results. Additional studies are necessary to better understand the impact of these newer biologic agents on cognitive function in elderly patients with rheumatic disease.

Key points

• Patients with chronic rheumatic conditions are beginning to live longer, adding to the elderly population.

• Patients with chronic rheumatologic disease are at increased risk of cognitive impairment compared to the general population.

• Recent development of biologic (i.e., TNF, IL-1, IL-6) and targeted drugs (i.e., Janus kinase inhibitors) have led to better control of disease activity.

• Current evidence suggests that TNF inhibitors may have beneficial effects on cognitive function. However, evidence on newer biologic and targeted therapies is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boonen A, van de Rest J, Dequeker J, van der Linden S (1997) How Renoir coped with rheumatoid arthritis. Bmj. 315(7123):1704–1708. https://doi.org/10.1136/bmj.315.7123.1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lahaye C, Tatar Z, Dubost JJ, Soubrier M (2015) Overview of biologic treatments in the elderly. Jt Bone Spine 82(3):154–160. https://doi.org/10.1016/j.jbspin.2014.10.012

    Article  Google Scholar 

  3. Hugo J, Ganguli M (2014) Dementia and cognitive impairment: epidemiology, diagnosis, and treatment clinics in geriatric medicine. Clin Geriatr Med 30(3):421–442. https://doi.org/10.1016/j.cger.2014.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shin SY, Katz P, Wallhagen M, Julian L (2012) Cognitive impairment in persons with rheumatoid arthritis. Arthritis Care Res 64(8):1144–1150. https://doi.org/10.1002/acr.21683

    Article  Google Scholar 

  5. Lee JH, Kim GT, Kim YK, Lee SG (2018) Cognitive function of patients with rheumatoid arthritis is associated with disease activity but not carotid atherosclerotic changes. Clin Exp Rheumatol 36(5):856–861

    PubMed  Google Scholar 

  6. Murray SG, Yazdany J, Kaiser R, Criswell LA, Trupin L, Yelin EH, Katz PP, Julian LJ (2012) Cardiovascular disease and cognitive dysfunction in systemic lupus erythematosus. Arthritis Care Res 64(9):1328–1333. https://doi.org/10.1002/acr.21691

    Article  Google Scholar 

  7. Hanly JG, Hong C, Smith S, Fisk JD (1999) A prospective analysis of cognitive function and anticardiolipin antibodies in systemic lupus erythematosus. Arthritis Rheum 42(4):728–734. https://doi.org/10.1002/1529-0131(199904)42:4<728::AID-ANR16>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  8. Jagpal A, Navarro-Millán I (2018) Cardiovascular co-morbidity in patients with rheumatoid arthritis: a narrative review of risk factors, cardiovascular risk assessment and treatment. BMC Rheumatol 2(1):10. https://doi.org/10.1186/s41927-018-0014-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maradit-Kremers H, Nicola PJ, Crowson CS, Ballman KV, Gabriel SE (2005) Cardiovascular death in rheumatoid arthritis: a population-based study. Arthritis Rheum 52(3):722–732. https://doi.org/10.1002/art.20878

    Article  PubMed  Google Scholar 

  10. Liao KP, Solomon DH (2013) Traditional cardiovascular risk factors, inflammation and cardiovascular risk in rheumatoid arthritis. Rheumatology (Oxford, England) 52(1):45–52. https://doi.org/10.1093/rheumatology/kes243

    Article  Google Scholar 

  11. Im CH, Kim NR, Kang JW, Kim JH, Kang JY, Bae GB, Nam EJ, Kang YM (2014) Inflammatory burden interacts with conventional cardiovascular risk factors for carotid plaque formation in rheumatoid arthritis. Rheumatology. 54(5):808–815. https://doi.org/10.1093/rheumatology/keu376

    Article  CAS  PubMed  Google Scholar 

  12. Ajeganova S, Andersson MLE, Frostegård J, Hafström I (2013) Disease factors in early rheumatoid arthritis are associated with differential risks for cardiovascular events and mortality depending on age at onset: a 10-year observational cohort study. J Rheumatol 40(12):1958–1966. https://doi.org/10.3899/jrheum.130365

    Article  CAS  PubMed  Google Scholar 

  13. del Rincón I, Williams K, Stern MP, Freeman GL, O'Leary DH, Escalante A (2003) Association between carotid atherosclerosis and markers of inflammation in rheumatoid arthritis patients and healthy subjects. Arthritis Rheum 48(7):1833–1840. https://doi.org/10.1002/art.11078

    Article  PubMed  Google Scholar 

  14. Asanuma Y, Oeser A, Shintani AK, Turner E, Olsen N, Fazio S, Linton MRF, Raggi P, Stein CM (2003) Premature coronary-artery atherosclerosis in systemic lupus Erythematosus. N Engl J Med 349(25):2407–2415. https://doi.org/10.1056/NEJMoa035611

    Article  CAS  PubMed  Google Scholar 

  15. Schoenfeld SR, Kasturi S, Costenbader KH (2013) The epidemiology of atherosclerotic cardiovascular disease among patients with SLE: a systematic review. Semin Arthritis Rheum 43(1):77–95. https://doi.org/10.1016/j.semarthrit.2012.12.002

    Article  PubMed  Google Scholar 

  16. Hollan I, Meroni PL, Ahearn JM, Cohen Tervaert JW, Curran S, Goodyear CS, Hestad KA, Kahaleh B, Riggio M, Shields K, Wasko MC (2013) Cardiovascular disease in autoimmune rheumatic diseases. Autoimmun Rev 12(10):1004–1015. https://doi.org/10.1016/j.autrev.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  17. Bartels CM, Buhr KA, Goldberg JW, Bell CL, Visekruna M, Nekkanti S, Greenlee RT (2014) Mortality and cardiovascular burden of systemic lupus erythematosus in a US population-based cohort. J Rheumatol 41(4):680–687. https://doi.org/10.3899/jrheum.130874

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu G-C, Liu H-R, Leng R-X, Li X-P, Li X-M, Pan H-F, Ye DQ (2016) Subclinical atherosclerosis in patients with systemic lupus erythematosus: a systemic review and meta-analysis. Autoimmun Rev 15(1):22–37. https://doi.org/10.1016/j.autrev.2015.10.002

    Article  PubMed  Google Scholar 

  19. Lin Y-R, Chou L-C, Chen H-C, Liou T-H, Huang S-W, Lin H-W (2016) Increased risk of dementia in patients with systemic lupus erythematosus: a nationwide population-based cohort study. Arthritis Care Res 68(12):1774–1779. https://doi.org/10.1002/acr.22914

    Article  Google Scholar 

  20. Tomietto P, Annese V, D'Agostini S, Venturini P, La Torre G, De Vita S et al (2007) General and specific factors associated with severity of cognitive impairment in systemic lupus erythematosus. Arthritis Care Res 57(8):1461–1472. https://doi.org/10.1002/art.23098

    Article  CAS  Google Scholar 

  21. Menon S, Jameson-Shortall E, Newman SP, Hall-Craggs MR, Chinn R, Isenberg DA (1999) A longitudinal study of anticardiolipin antibody levels and cognitive functioning in systemic lupus erythematosus. Arthritis Rheum 42(4):735–741. https://doi.org/10.1002/1529-0131(199904)42:4<735::AID-ANR17>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  22. Gonzales-Portillo F, McIntyre JA, Wagenknecht DR, Williams LS, Bruno A, Biller J (2001) Spectrum of antiphospholipid antibodies (aPL) in patients with cerebrovascular disease. J Stroke Cerebrovasc Dis 10(5):222–226. https://doi.org/10.1053/jscd.2001.29818

    Article  CAS  PubMed  Google Scholar 

  23. Duarte-García A, Romero-Díaz J, Juárez S, Cicero-Casarrubias A, Fragoso-Loyo H, Núñez-Alvarez C et al (2018) Disease activity, autoantibodies, and inflammatory molecules in serum and cerebrospinal fluid of patients with systemic lupus erythematosus and cognitive dysfunction. PLoS One 13(5):e0196487-e. https://doi.org/10.1371/journal.pone.0196487

    Article  CAS  Google Scholar 

  24. Ungprasert P, Srivali N, Kittanamongkolchai W (2015) Risk of coronary artery disease in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann Transl Med 3(4):51. https://doi.org/10.3978/j.issn.2305-5839.2015.02.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peluso R, Caso F, Tasso M, Sabbatino V, Lupoli R, Dario Di Minno MN et al (2019) Biomarkers of subclinical atherosclerosis in patients with psoriatic arthritis. Open Access Rheumatol 11:143–156. https://doi.org/10.2147/OARRR.S206931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer's Dement (New York, N Y) 4:575–590. https://doi.org/10.1016/j.trci.2018.06.014

    Article  Google Scholar 

  27. Tan ZS, Beiser AS, Vasan RS, Roubenoff R, Dinarello CA, Harris TB, Benjamin EJ, Au R, Kiel DP, Wolf PA, Seshadri S (2007) Inflammatory markers and the risk of Alzheimer disease. Neurology. 68(22):1902–1908. https://doi.org/10.1212/01.wnl.0000263217.36439.da

    Article  CAS  PubMed  Google Scholar 

  28. Petersen LE, Baptista TSA, Molina JK, Motta JG, do Prado A, Piovesan DM et al (2018) Cognitive impairment in rheumatoid arthritis: role of lymphocyte subsets, cytokines and neurotrophic factors. Clin Rheumatol 37(5):1171–1181. https://doi.org/10.1007/s10067-018-3990-9

    Article  PubMed  Google Scholar 

  29. Baptista TSA, Petersen LE, Molina JK, de Nardi T, Wieck A, do Prado A et al (2017) Autoantibodies against myelin sheath and S100β are associated with cognitive dysfunction in patients with rheumatoid arthritis. Clin Rheumatol 36(9):1959–1968. https://doi.org/10.1007/s10067-017-3724-4

    Article  PubMed  Google Scholar 

  30. Tobinick E, Gross H, Weinberger A, Cohen H (2006) TNF-alpha modulation for treatment of Alzheimer's disease: a 6-month pilot study. MedGenMed. 8(2):25

    PubMed  PubMed Central  Google Scholar 

  31. Tobinick EL, Gross H (2008a) Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. J Neuroinflammation 5:2. https://doi.org/10.1186/1742-2094-5-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tobinick EL, Gross H (2008b) Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer’s disease. BMC Neurol 8:27. https://doi.org/10.1186/1471-2377-8-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Butchart J, Brook L, Hopkins V, Teeling J, Püntener U, Culliford D et al (2015) Etanercept in Alzheimer disease: a randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 84(21):2161–2168. https://doi.org/10.1212/wnl.0000000000001617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen K-T, Chen Y-C, Fan Y-H, Lin W-X, Lin W-C, Wang Y-H, Lin L, Chiou JY, Wei JCC (2018) Rheumatic diseases are associated with a higher risk of dementia: a nation-wide, population-based, case-control study. Int J Rheum Dis 21(2):373–380. https://doi.org/10.1111/1756-185x.13246

    Article  PubMed  Google Scholar 

  35. Meade T, Manolios N, Cumming SR, Conaghan PG, Katz P (2018) Cognitive impairment in rheumatoid arthritis: a systematic review. Arthritis Care Res 70(1):39–52. https://doi.org/10.1002/acr.23243

    Article  Google Scholar 

  36. Vitturi BK, Nascimento BAC, Alves BR, de Campos FSC, Torigoe DY (2019) Cognitive impairment in patients with rheumatoid arthritis. J Clin Neurosci 69:81–87. https://doi.org/10.1016/j.jocn.2019.08.027

    Article  PubMed  Google Scholar 

  37. Ungprasert P, Wijarnpreecha K, Thongprayoon C (2016) Rheumatoid arthritis and the risk of dementia: a systematic review and meta-analysis. Neurol India 64(1):56–61. https://doi.org/10.4103/0028-3886.173623

    Article  PubMed  Google Scholar 

  38. Wallin K, Solomon A, Kåreholt I, Tuomilehto J, Soininen H, Kivipelto M (2012) Midlife rheumatoid arthritis increases the risk of cognitive impairment two decades later: a population-based study. J Alzheimers Dis 31:669–676. https://doi.org/10.3233/JAD-2012-111736

    Article  PubMed  Google Scholar 

  39. Brey RL, Holliday SL, Saklad AR, Navarrete MG, Hermosillo-Romo D, Stallworth CL et al (2002) Neuropsychiatric syndromes in lupus: prevalence using standardized definitions. Neurology. 58(8):1214–1220. https://doi.org/10.1212/wnl.58.8.1214

    Article  CAS  PubMed  Google Scholar 

  40. Kozora E, Arciniegas DB, Filley CM, West SG, Brown M, Miller D, Grimm A, Devore MD, Wingrove C, Zhang L (2008) Cognitive and neurologic status in patients with systemic lupus erythematosus without major neuropsychiatric syndromes. Arthritis Rheum 59(11):1639–1646. https://doi.org/10.1002/art.24189

    Article  PubMed  Google Scholar 

  41. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. (1999) Arthritis & Rheumatism. 42(4):599–608. https://doi.org/10.1002/1529-0131(199904)42:4<599::AID-ANR2>3.0.CO;2-F

  42. Kozora E, Ellison MC, West S (2004) Reliability and validity of the proposed American College of Rheumatology neuropsychological battery for systemic lupus erythematosus. Arthritis Care Res 51(5):810–818. https://doi.org/10.1002/art.20692

    Article  Google Scholar 

  43. Rayes HA, Tani C, Kwan A, Marzouk S, Colosimo K, Medina-Rosas J, Mustafa A, Su J, Lambiris P, Mosca M, Touma Z (2018) What is the prevalence of cognitive impairment in lupus and which instruments are used to measure it? A systematic review and meta-analysis. Semin Arthritis Rheum 48(2):240–255. https://doi.org/10.1016/j.semarthrit.02.007

    Article  PubMed  Google Scholar 

  44. Leslie B, Crowe SF (2018) Cognitive functioning in systemic lupus erythematosus: a meta-analysis. Lupus. 27(6):920–929. https://doi.org/10.1177/0961203317751859

    Article  CAS  PubMed  Google Scholar 

  45. Cannerfelt B, Nystedt J, Jonsen A, Latt J, van Westen D, Lilja A et al (2018) White matter lesions and brain atrophy in systemic lupus erythematosus patients: correlation to cognitive dysfunction in a cohort of systemic lupus erythematosus patients using different definition models for neuropsychiatric systemic lupus erythematosus. Lupus. 27(7):1140–1149. https://doi.org/10.1177/0961203318763533

    Article  CAS  PubMed  Google Scholar 

  46. Conti F, Alessandri C, Perricone C, Scrivo R, Rezai S, Ceccarelli F et al (2012) Neurocognitive dysfunction in systemic lupus erythematosus: association with antiphospholipid antibodies, disease activity and chronic damage. PLoS One 7(3):e33824-e. https://doi.org/10.1371/journal.pone.0033824

    Article  CAS  Google Scholar 

  47. J Säve-Söderbergh, B E Malmvall, R Andersson, B A Bengtsson (1986) Giant cell arteritis as a cause of death. Report of nine cases. (0098–7484 (Print))

  48. Wilkinson IM, Russell RW (1972) Arteries of the head and neck in giant cell arteritis. A pathological study to show the pattern of arterial involvement. Arch Neurol 27(5):378–391. https://doi.org/10.1001/archneur.1972.00490170010003

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez-Gay MA, Barros S, Lopez-Diaz MJ, Garcia-Porrua C, Sanchez-Andrade A, Llorca J (2005) Giant cell arteritis: disease patterns of clinical presentation in a series of 240 patients. Medicine (Baltimore) 84(5):269–276. https://doi.org/10.1097/01.md.0000180042.42156.d1

    Article  Google Scholar 

  50. Alsolaimani RS, Bhavsar SV, Khalidi NA, Pagnoux C, Mandzia JL, Tay K et al (2016) Severe intracranial involvement in giant cell arteritis: 5 cases and literature review. J Rheumatol. https://doi.org/10.3899/jrheum.150143

  51. Lariviere D, Sacre K, Klein I, Hyafil F, Choudat L, Chauveheid MP et al (2014) Extra- and intracranial cerebral vasculitis in giant cell arteritis: an observational study. Medicine (Baltimore) 93(28):e265. https://doi.org/10.1097/md.0000000000000265

    Article  Google Scholar 

  52. Carlo MD, Becciolini A, Incorvaia A, Beci G, Biggioggero M, Favalli EG et al (2019) SAT0375 Mild cognitive impairment in psoriatic arthritis: prevalence and associated factors. Ann Rheum Dis 78(Suppl 2):1271. https://doi.org/10.1136/annrheumdis-2019-eular.4695

    Article  Google Scholar 

  53. Marek-Józefowicz L, Jaracz M, Placek W, Czajkowski R, Borkowska A (2017) Cognitive impairment in patients with severe psoriasis. Postepy Dermatol Alergol 34(2):120–125. https://doi.org/10.5114/ada.2017.67074

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gisondi P, Sala F, Alessandrini F, Avesani V, Zoccatelli G, Beltramello A, Moretto G, Gambina G, Girolomoni G (2014) Mild cognitive impairment in patients with moderate to severe chronic plaque psoriasis. Dermatology. 228(1):78–85. https://doi.org/10.1159/000357220

    Article  PubMed  Google Scholar 

  55. Abuabara K, Azfar RS, Shin DB, Neimann AL, Troxel AB, Gelfand JM (2010) Cause-specific mortality in patients with severe psoriasis: a population-based cohort study in the U.K. Br J Dermatol 163(3):586–592. https://doi.org/10.1111/j.1365-2133.2010.09941.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Campalani E, Allen MH, Fairhurst D, Young HS, Mendonca CO, Burden AD, Griffiths CEM, Crook MA, Barker JNWN, Smith CH (2006) Apolipoprotein E gene polymorphisms are associated with psoriasis but do not determine disease response to acitretin. Br J Dermatol 154(2):345–352. https://doi.org/10.1111/j.1365-2133.2005.06950.x

    Article  CAS  PubMed  Google Scholar 

  57. Mahley RW, Rall SC (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1(1):507–537. https://doi.org/10.1146/annurev.genom.1.1.507

    Article  CAS  PubMed  Google Scholar 

  58. Jiang H, Hampel H, Prvulovic D, Wallin A, Blennow K, Li R, Shen Y (2011) Elevated CSF levels of TACE activity and soluble TNF receptors in subjects with mild cognitive impairment and patients with Alzheimer’s disease. Mol Neurodegener 6:69. https://doi.org/10.1186/1750-1326-6-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tobinick E (2009) Tumour necrosis factor modulation for treatment of Alzheimer’s disease: rationale and current evidence. CNS Drugs 23(9):713–725. https://doi.org/10.2165/11310810-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  60. Vitturi BK, Suriano ES, Pereira de Sousa AB, Torigoe DY (2020) Cognitive impairment in patients with ankylosing spondylitis. Can J Neurol Sci 47(2):219–225. https://doi.org/10.1017/cjn.2020.14

    Article  PubMed  Google Scholar 

  61. Baysal O, Durmus B, Ersoy Y, Altay Z, Senel K, Nas K et al (2011) Relationship between psychological status and disease activity and quality of life in ankylosing spondylitis. Rheumatol Int 31(6):795–800. https://doi.org/10.1007/s00296-010-1381-x

    Article  PubMed  Google Scholar 

  62. Martindale J, Smith J, Sutton CJ, Grennan D, Goodacre L, Goodacre JA (2006) Disease and psychological status in ankylosing spondylitis. Rheumatology (Oxford) 45(10):1288–1293. https://doi.org/10.1093/rheumatology/kel115

    Article  CAS  Google Scholar 

  63. Jang HD, Park JS, Kim DW, Han K, Shin BJ, Lee JC, Choi SW, Suh SW, Yang JH, Park SY, Cho WJ, Hong JY (2019) Relationship between dementia and ankylosing spondylitis: a nationwide, population-based, retrospective longitudinal cohort study. PLoS One 14(1):e0210335. https://doi.org/10.1371/journal.pone.0210335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dautzenberg L, Jessurum N, Dautzenberg PLJ, Keijsers CJPW (2015) Reversible methotrexate-induced dementia: a case report. J Am Geriatr Soc 63(6):1273–1274. https://doi.org/10.1111/jgs.13517

    Article  PubMed  Google Scholar 

  65. Chou M-H, Wang J-Y, Lin C-L, Chung W-S (2017) DMARD use is associated with a higher risk of dementia in patients with rheumatoid arthritis: a propensity score-matched case–control study. Toxicol Appl Pharmacol 334:217–222. https://doi.org/10.1016/j.taap.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  66. Judge A, Garriga C, Arden NK, Lovestone S, Prieto-Alhambra D, Cooper C, Edwards CJ (2017) Protective effect of antirheumatic drugs on dementia in rheumatoid arthritis patients. Alzheimers Dement (N Y) 3(4):612–621. https://doi.org/10.1016/j.trci.2017.10.002

    Article  Google Scholar 

  67. Newby D, Prieto-Alhambra D, Duarte-Salles T, Ansell D, Pedersen L, van der Lei J, Mosseveld M, Rijnbeek P, James G, Alexander M, Egger P, Podhorna J, Stewart R, Perera G, Avillach P, Grosdidier S, Lovestone S, Nevado-Holgado AJ (2020) Methotrexate and relative risk of dementia amongst patients with rheumatoid arthritis: a multi-national multi-database case-control study. Alzheimers Res Ther 12(1):38. https://doi.org/10.1186/s13195-020-00606-5

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fardet L, Nazareth I, Petersen I (2019) Chronic hydroxychloroquine/chloroquine exposure for connective tissue diseases and risk of Alzheimer’s disease: a population-based cohort study. Ann Rheum Dis 78(2):279–27282. https://doi.org/10.1136/annrheumdis-2018-214016

    Article  CAS  PubMed  Google Scholar 

  69. Van Gool WA, Weinstein HC, Scheltens P, Walstra GJ (2001) Effect of hydroxychloroquine on progression of dementia in early Alzheimer’s disease: an 18-month randomised, double-blind, placebo-controlled study. Lancet. 358(9280):455–460. https://doi.org/10.1016/s0140-6736(01)05623-9

    Article  PubMed  Google Scholar 

  70. Chou RC, Kane M, Ghimire S, Gautam S, Gui J (2016) Treatment for rheumatoid arthritis and risk of Alzheimer's disease: a nested case-control analysis. CNS Drugs 30(11):1111–1120. https://doi.org/10.1007/s40263-016-0374-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McGuinness B, Holmes C, Mirakhur A, Kearsley-Fleet L, Vieira R, Watson K, BSRBR-RA Contributors Group, BSRBR-RA Control Centre Consortium, Hyrich K (2018) The influence of TNF inhibitors on dementia incidence in patients with rheumatoid arthritis; an analysis from the BSRBR-RA. Int J Geriatr Psychiatry 33(3):556–558. https://doi.org/10.1002/gps.4793

    Article  PubMed  Google Scholar 

  72. Zhou M, Xu R, Kaelber DC, Gurney ME (2020) Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimer's disease in patients with rheumatoid arthritis and psoriasis. PLoS One 15(3):e0229819. https://doi.org/10.1371/journal.pone.0229819

  73. McGuinness B (2018) Understanding whether drugs for rheumatoid arthritis can reduce the risk of Alzheimer’s disease. Alzheimer's Society. https://www.alzheimers.org.uk/research/our-research/research-projects/understanding-whether-drugs-rheumatoid-arthritis-can-reduce-risk-alzheimersdisease

  74. Hu J, Feng X, Valdearcos M, Lutrin D, Uchida Y, Koliwad SK, Maze M (2018) Interleukin-6 is both necessary and sufficient to produce perioperative neurocognitive disorder in mice. Br J Anaesth 120(3):537–545. https://doi.org/10.1016/j.bja.2017.11.096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Elcioglu HK, Aslan E, Ahmad S, Alan S, Salva E, Elcioglu OH et al (2016) Tocilizumab's effect on cognitive deficits induced by intracerebroventricular administration of streptozotocin in Alzheimer's model. Mol Cell Biochem 420(1–2):21–28. https://doi.org/10.1007/s11010-016-2762-6

    Article  CAS  PubMed  Google Scholar 

  76. Kobayashi K, Okamoto Y, Inoue H, Usui T, Ihara M, Kawamata J, Miki Y, Mimori T, Tomimoto H, Takahashi R (2009) Leukoencephalopathy with cognitive impairment following tocilizumab for the treatment of rheumatoid arthritis (RA). Intern Med 48(15):1307–1309. https://doi.org/10.2169/internalmedicine.48.1926

    Article  PubMed  Google Scholar 

  77. Yamaguchi Y, Furukawa K, Yamamoto T, Takahashi Y, Tanaka K, Takahashi M (2014) Multifocal encephalopathy and autoimmune-mediated limbic encephalitis following tocilizumab therapy. Intern Med 53(8):879–882. https://doi.org/10.2169/internalmedicine.53.0615

    Article  PubMed  Google Scholar 

  78. Bugatti S, Vitolo B, Caporali R, Montecucco C, Manzo A (2014) B cells in rheumatoid arthritis: from pathogenic players to disease biomarkers. Biomed Res Int 2014:681678–681614. https://doi.org/10.1155/2014/681678

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cope AP, Schulze-Koops H, Aringer M (2007) The central role of T cells in rheumatoid arthritis. Clin Exp Rheumatol 25(5 Suppl 46):S4–S11

    CAS  PubMed  Google Scholar 

  80. Fuggle NR, Howe FA, Allen RL, Sofat N (2014) New insights into the impact of neuro-inflammation in rheumatoid arthritis. Front Neurosci 8:357. https://doi.org/10.3389/fnins.2014.00357

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chang C, Zhao Y, Song G, She K (2018) Resveratrol protects hippocampal neurons against cerebral ischemia-reperfusion injury via modulating JAK/ERK/STAT signaling pathway in rats. J Neuroimmunol 315:9–14. https://doi.org/10.1016/j.jneuroim.2017.11.015

    Article  CAS  PubMed  Google Scholar 

  82. Ben Haim L, Ceyzeriat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, Ruiz M, Petit F, Houitte D, Faivre E, Vandesquille M, Aron-Badin R, Dhenain M, Deglon N, Hantraye P, Brouillet E, Bonvento G, Escartin C (2015) The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci 35(6):2817–2829. https://doi.org/10.1523/jneurosci.3516-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cho S-K, Sung Y-K, Kim D, Won S, Choi C-B, Kim T-H et al (2016) Drug retention and safety of TNF inhibitors in elderly patients with rheumatoid arthritis. BMC Musculoskelet Disord 17:333. https://doi.org/10.1186/s12891-016-1185-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Filippini M, Bazzani C, Favalli EG, Marchesoni A, Atzeni F, Sarzi-Puttini P, Pallavicini FB, Caporali R, Gorla R (2010) Efficacy and safety of anti-tumour necrosis factor in elderly patients with rheumatoid arthritis: an observational study. Clin Rev Allergy Immunol 38(2):90–96. https://doi.org/10.1007/s12016-009-8142-1

    Article  CAS  PubMed  Google Scholar 

  85. Borren NZ, Ananthakrishnan AN (2019) Safety of biologic therapy in older patients with immune-mediated diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 17(9):1736–43.e4. https://doi.org/10.1016/j.cgh.2018.12.032

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Raji receives grant support from NIH Grant R01-DA039192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Sood.

Ethics declarations

Disclosures

None.

Ethics approval

Manuscript does not contain clinical studies or patient data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, A., Raji, M.A. Cognitive impairment in elderly patients with rheumatic disease and the effect of disease-modifying anti-rheumatic drugs. Clin Rheumatol 40, 1221–1231 (2021). https://doi.org/10.1007/s10067-020-05372-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05372-1

Keywords

Navigation