Skip to main content

Advertisement

Log in

Local administration of aspirin with β-tricalcium phosphate/poly-lactic-co-glycolic acid (β-TCP/PLGA) could enhance osteoporotic bone regeneration

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Composite materials β-tricalcium phosphate (β-TCP) and poly-lactic-co-glycolic acid (PLGA) have achieved stable bone regeneration without cell transplantation in previous studies. Recent research shows that aspirin (ASP) has great potential in promoting bone regeneration. The objective of the present study was to incorporate PLGA into β-TCP combined with a lower single-dose local administration of ASP to enhance its in vivo biodegradation and bone tissue growth. After the creation of a rodent critical-sized femoral metaphyseal bone defect, PLGA -modified β-TCP (TP) was prepared by mixing sieved granules of β-TCP and PLGA (50:50, v/v) for medical use, then TP with dripped 50 µg/0.1 ml and 100 µg/0.1 ml aspirin solution was implanted into the defect of OVX rats until death at 8 weeks. The defected area in distal femurs of rats was harvested for evaluation by histology, micro-CT, biomechanics and real time RT-PCR. The results of our study show that a single-dose local administration of ASP combined with the local usage of TP can increase the healing of defects in OVX rats. Single-dose local administration of aspirin can improve the transcription of genes involved in the regulation of bone formation and vascularization in the defect area, and inhibits osteoclast activity. Furthermore, treatments with a higher single-dose local administration of ASP and TP showed a stronger effect on accelerating the local bone formation than while using a lower dose of ASP. The results from our study demonstrate that the combination of a single-dose local administration of ASP and β-TCP/PLGA had an additive effect on local bone formation in osteoporosis rats, and bone regeneration by PLGA/β-TCP/ASP occured in a dose-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boulier A, Schwarz J, Lespesailles E, Baniel A, Tomé D, Blais A (2017) Combination of micellar casein with calcium and vitamins D2 and K2 improves bone status of ovariectomized mice. Osteoporos Int 27:1–10

    Google Scholar 

  2. Hernández A, Sánchez E, Soriano I, Reyes R, Delgado A, Évora C (2012) Material-related effects of BMP-2 delivery systems on bone regeneration. Acta Biomater 8:781–791

    Article  Google Scholar 

  3. Thormann U, Ray S, Sommer U, Elkhassawna T, Rehling T, Hundgeburth M, Henß A, Rohnke M, Janek J, Lips KS, Heiss C, Schlewitz G, Szalay G, Schumacher M, Gelinsky M, Schnettler R, Alt V (2013) Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials 34:8589–8598

    Article  CAS  Google Scholar 

  4. Sengupta S, Park SH, Patel A, Carn J, Lee K, Kaplan DLJTEPA (2010) Hypoxia and amino acid supplementation synergistically promote the osteogenesis of human mesenchymal stem cells on silk protein scaffolds. Tissue Eng Part A 16:3623

    Article  CAS  Google Scholar 

  5. Denry I, Kuhn LT (2016) Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 32:43–53

    Article  CAS  Google Scholar 

  6. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554

    Article  CAS  Google Scholar 

  7. Shavandi A, Ael-D B, Sun Z, Ali A, Gould MJMS (2015) A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Mater Sci Eng C 55:373–383

    Article  CAS  Google Scholar 

  8. Liu X, Ma PXJAoBE (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    Article  Google Scholar 

  9. Purnama A, Aid-Launais R, Haddad O, Maire M, Mantovani D, Letourneur D, Hlawaty H, Le Visage C (2015) Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice. Drug Deliv Transl Res 5(2):187–197

    Article  CAS  Google Scholar 

  10. Zeng YP, Yang C, Li Y, Fan Y, Yang HJ, Liu B, Sang HX (2016) Aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells. Mol Med Rep 14:1957–1962

    Article  CAS  Google Scholar 

  11. Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, Yang R, Chen W, Wang S, Shi S (2011) Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med 17(12):1594–1601

    Article  CAS  Google Scholar 

  12. Wei J, Wang J, Gong Y, Zeng R (2015) Effectiveness of combined salmon calcitonin and aspirin therapy for osteoporosis in ovariectomized rats. Mol Med Rep 12:1717

    Article  CAS  Google Scholar 

  13. Zhang HX, Xiao GY, Wang X, Dong ZG, Ma ZY, Li L, Li YH, Pan X, Nie L (2015) Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering. J Biomed Mater Res Part A 103:3250–3258

    Article  CAS  Google Scholar 

  14. Tao ZS, Zhou WS, Qiang Z, Tu KK, Huang ZL, Xu HM, Sun T, Lv YX, Cui W, Yang L (2016) Intermittent administration of human parathyroid hormone (1–34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur. J Biomater Appl 30(7):952–960

    Article  CAS  Google Scholar 

  15. Tao ZS, Zhou WS, He XW, Liu W, Bai BL, Zhou Q, Huang ZL, Tu KK, Li H, Sun T, Lv YX, Cui W, Yang L (2016) A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C Mater Biol Appl 62:226–232. https://doi.org/10.1016/j.msec.2016.01.034

    Article  CAS  PubMed  Google Scholar 

  16. Tao ZS, Zhou WS, Wu XJ, Wang L, Yang M, Xie JB, Xu ZJ, Ding GZ (2019) Single-dose local administration of parathyroid hormone (1–34, PTH) with beta-tricalcium phosphate/collagen (beta-TCP/COL) enhances bone defect healing in ovariectomized rats. J Bone Miner Metab 37:28–35. https://doi.org/10.1007/s00774-018-0906-3

    Article  CAS  PubMed  Google Scholar 

  17. Tao Z, Zhou W, Jiang Y, Wu X, Xu Z, Yang M, Xie J (2018) Effects of strontium-modified calcium phosphate cement combined with bone morphogenetic protein-2 on osteoporotic bone defects healing in rats. J Biomater Appl 33:3–10. https://doi.org/10.1177/0885328218765847

    Article  CAS  PubMed  Google Scholar 

  18. Kajii F, Iwai A, Tanaka H, Matsui K, Kawai T, Kamakura S (2018) Single-dose local administration of teriparatide with a octacalcium phosphate collagen composite enhances bone regeneration in a rodent critical-sized calvarial defect. J Biomed Mater Res Part B Appl Biomater 106:1851–1857

    Article  CAS  Google Scholar 

  19. Tao ZS, Tu KK, Huang ZL, Zhou Q, Sun T, Xu HM, Zhou YL, Lv YX, Cui W, Yang L (2016) Combined treatment with parathyroid hormone (1–34) and beta-tricalcium phosphate had an additive effect on local bone formation in a rat defect model. Med Biol Eng Comput 54(9):1353–1362

    Article  Google Scholar 

  20. Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L (2015) Effect exerted by teriparatide upon repair function of beta-tricalcium phosphate to ovariectomised rat’s femoral metaphysis defect caused by osteoporosis. Injury 46:2134–2141. https://doi.org/10.1016/j.injury.2015.07.042

    Article  PubMed  Google Scholar 

  21. Tao ZS, Zhou WS, Wu XJ, Zhang X, Wang L, Xie JB, Xu ZJ, Ding GZ, Yang M (2019) Prevention of ovariectomy-induced osteoporosis in rats : comparative study of zoledronic acid, parathyroid hormone (1–34) and strontium ranelate. Z Gerontol Geriatr 52:139–147. https://doi.org/10.1007/s00391-018-1376-x

    Article  PubMed  Google Scholar 

  22. Tao ZS, Lv YX, Cui W, Huang ZL, Tu KK, Zhou Q, Sun T, Yang L (2016) Effect of teriparatide on repair of femoral metaphyseal defect in ovariectomized rats. Z Gerontol Geriatr 49(5):423–428

    Article  Google Scholar 

  23. Yang N, Cui Y, Tan J, Fu X, Han X, Leng H, Song C (2014) Local injection of a single dose of simvastatin augments osteoporotic bone mass in ovariectomized rats. J Bone Miner Metab 32(3):252–260

    Article  CAS  PubMed  Google Scholar 

  24. Lim SS, Kook SH, Bhattarai G, Cho ES, Seo YK, Lee JC (2015) Local delivery of COMP-angiopoietin 1 accelerates new bone formation in rat calvarial defects. J Biomed Mater Res Part A 103:2942–2951

    Article  CAS  Google Scholar 

  25. Bone HG, Greenspan SL, Mckeever C, Bell N, Davidson M, Downs RW (2000) Alendronate and estrogen effects in postmenopausal women with low bone mineral density. Alendronate/Estrogen Study Group. J Clin Endocr Metab 85:720–726

    CAS  PubMed  Google Scholar 

  26. Xie QF, Xie JH, Dong TT, Su JY, Cai DK, Chen JP, Liu LF, Li YC, Lai XP, Tsim KW, Su ZR (2012) Effect of a derived herbal recipe from an ancient Chinese formula, Danggui Buxue Tang, on ovariectomized rats. J Ethnopharmacol 144(3):567–575

    Article  Google Scholar 

  27. Chen L, Yang L, Yao M, Cui XJ, Xue CC, Wang YJ, Shu B (2016) Biomechanical characteristics of osteoporotic fracture healing in ovariectomized rats: a systematic review. PLoS One 11:e0153120

    Article  Google Scholar 

  28. Vervloet MG, Brandenburg VM (2017) Circulating markers of bone turnover. J Nephrol 30:663–670

    Article  Google Scholar 

  29. Gasser JA, Kneissel M (2017) Bone physiology and biology. Springer, Cham

    Book  Google Scholar 

  30. Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L (2015) Treatment study of distal femur for parathyroid hormone (1–34) and beta-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats. J Cranio-Maxillo Fac Surg 43(10):2136–2143

    Article  Google Scholar 

  31. Thanaviratananich S, Thanaviratananich S, Ngamjarus CJB (2011) The effect of BMP-2 on the osteoconductive properties of β-tricalcium phosphate in rat calvaria defects. Biomaterials 32:3855–3861

    Article  Google Scholar 

  32. Rachner TD, Khosla S, Hofbauer LCJL (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  CAS  Google Scholar 

  33. Cao L, Liu G, Gan Y, Fan Q, Yang F, Zhang X, Tang T, Dai K (2012) The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats. Biomaterials 33(20):5076–5084

    Article  CAS  Google Scholar 

  34. Williams J, Maitra S, Anderson M, Christiansen B, Reddi A, Lee MJ (2015) BMP-7 and bone regeneration: evaluation of dose–response in a rodent segmental defect model. J Orthop Trauma. 29:e336–e341

    Article  Google Scholar 

  35. Shi S, Gronthos S, Chen S, Reddi A, Counter CM, Robey PG, Wang CY (2002) Bone formation by human postnatal bone marrow stromal stem cells isenhanced by telomerase expression. Nat Biotechnol 20(6):587–591

    Article  CAS  Google Scholar 

  36. Hu Z, Zhang F, Yang Z, Zhang J, Zhang D, Yang N, Zhang Y, Cao K (2013) Low–dose aspirin promotes endothelial progenitor cell migration and adhesion and prevents senescence. Cell Biol Int 32:761–768

    Article  Google Scholar 

  37. Yamaza T, Miura Y, Bi Y, Liu Y, Akiyama K, Sonoyama W, Patel V, Gutkind S, Young M, Gronthos S, Le A, Wang CY, Chen W, Shi S (2008) Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS One 3:907–911

    Article  Google Scholar 

  38. Carbone LD, Tylavsky FA, Cauley JA, Harris TB, Lang TF, Bauer DC, Barrow KD, Kritchevsky SB (2003) Association between bone mineral density and the use of nonsteroidal anti-inflammatory drugs and aspirin: impact of cyclooxygenase selectivity. J Bone Miner Res 18:1795–1802. https://doi.org/10.1359/jbmr.2003.18.10.1795

    Article  CAS  PubMed  Google Scholar 

  39. Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, Zhen G, Bian Q, Yu B, Chang W, Qiu T, Pickarski M, Duong LT, Windle JJ, Luo X, Liao E, Cao X (2014) PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 20:1270–1278

    Article  CAS  Google Scholar 

  40. Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nat Biotechnol 507:323–328

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Yang or Hong-Guang Xu.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Ethical approval

This study did not involve human participants.

Informed consent

This study does not involve human participants and therefore does not require informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, ZS., Wu, XJ., Zhou, WS. et al. Local administration of aspirin with β-tricalcium phosphate/poly-lactic-co-glycolic acid (β-TCP/PLGA) could enhance osteoporotic bone regeneration. J Bone Miner Metab 37, 1026–1035 (2019). https://doi.org/10.1007/s00774-019-01008-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-01008-w

Keywords

Navigation