Skip to main content

Advertisement

Log in

Wine and bone health: a review

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

A light-to-moderate wine consumption has been shown to provide several beneficial effects on the skeletal system, including reduced risk of bone mass loss and fractures. Wine is rich in phenolic compounds, strong phytoestrogens and natural antioxidants, to which bone protection is mainly attributed. The objective of this review was to give an overview of the exact mechanisms by which wine consumption is involved in bone protection. We found a great variety of in vitro research on the beneficial effects of isolated wine phenolics on the skeletal system, with a significant lack of evidence of their in vivo effects. In addition, we found almost no studies investigating how wine, a mixture of these phenolics dissolved in ethanol, affects the skeletal system. Our results warrant further research on this interesting topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. German JB, Walzem RL (2000) The health benefits of wine. Annu Rev Nutr 20:561–593

    Article  PubMed  CAS  Google Scholar 

  2. Vasanthi HR, Parameswari RP, DeLeiris J, Das DK (2012) Health benefits of wine and alcohol from neuroprotection to heart health. Front Biosci (Elite Ed) 4:1505–1512

    Article  Google Scholar 

  3. Giacosa A, Adam-Blondon AF, Baer-Sinnott S, Barale R, Bavaresco L, Di Gaspero G, Dugo L, Ellison RC, Gerbi V, Gifford D, Janssens J, La Vecchia C, Negri E, Pezzotti M, Santi L, Santi L, Rondanelli M (2012) Alcohol and wine in relation to cancer and other diseases. Eur J Cancer Prev 21:103–108

    Article  PubMed  CAS  Google Scholar 

  4. Waterhouse AL (2002) Wine phenolics. Ann N Y Acad Sci 957:21–36

    Article  PubMed  CAS  Google Scholar 

  5. Deng XS, Deitrich RA (2007) Ethanol metabolism and effects: nitric oxide and its interaction. Curr Clin Pharmacol 2:145–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Standridge JB, Zylstra RG, Adams SM (2004) Alcohol consumption: an overview of benefits and risks. South Med J 97:664–672

    Article  PubMed  Google Scholar 

  7. Jin M, Cai S, Guo J, Zhu Y, Li M, Yu Y, Zhang S, Chen K (2013) Alcohol drinking and all cancer mortality: a meta-analysis. Ann Oncol 24:807–816

    Article  PubMed  CAS  Google Scholar 

  8. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    PubMed  CAS  Google Scholar 

  9. Muhlbauer RC, Lozano A, Reinli A, Wetli H (2003) Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats. J Nutr 133:3592–3597

    PubMed  Google Scholar 

  10. Hsu YL, Liang HL, Hung CH, Kuo PL (2009) Syringetin, a flavonoid derivative in grape and wine, induces human osteoblast differentiation through bone morphogenetic protein-2/extracellular signal-regulated kinase 1/2 pathway. Mol Nutr Food Res 53:1452–1461

    Article  PubMed  CAS  Google Scholar 

  11. Fremont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    Article  PubMed  CAS  Google Scholar 

  12. Zhou H, Shang L, Li X, Zhang X, Gao G, Guo C, Chen B, Liu Q, Gong Y, Shao C (2009) Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells. Exp Cell Res 315:2953–2962

    Article  PubMed  CAS  Google Scholar 

  13. He X, Andersson G, Lindgren U, Li Y (2010) Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biochem Biophys Res Commun 401:356–362

    Article  PubMed  CAS  Google Scholar 

  14. Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, Xiao Z (2007) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14:806–814

    Article  PubMed  CAS  Google Scholar 

  15. Elmali N, Esenkaya I, Harma A, Ertem K, Turkoz Y, Mizrak B (2005) Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm Res 54:158–162

    Article  PubMed  CAS  Google Scholar 

  16. Habold C, Momken I, Ouadi A, Bekaert V, Brasse D (2011) Effect of prior treatment with resveratrol on density and structure of rat long bones under tail-suspension. J Bone Miner Metab 29:15–22

    Article  PubMed  CAS  Google Scholar 

  17. Zhang TJ, Zhang W, Bian LG, Liu SC, Yan J, Zong Y, Gui L, Lu D (2012) Protective effects and mechanisms of resveratrol on the rats suffering with osteoporosis. Acta Anatomica Sinica 43:679–684

    CAS  Google Scholar 

  18. Gehm BD, McAndrews JM, Chien PY, Jameson JL (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA 94:14138–14143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bagchi D, Preuss HG, Bagchi M, Stohs SJ (2000) Phytoestrogen, resveratrol and women’s health (Review). Res Commun Pharmacol Toxicol 5:107–121

    CAS  Google Scholar 

  20. Ashby J, Tinwell H, Pennie W, Brooks AN, Lefevre PA, Beresford N, Sumpter JP (1999) Partial and weak oestrogenicity of the red wine constituent resveratrol: consideration of its superagonist activity in MCF-7 cells and its suggested cardiovascular protective effects. J Appl Toxicol 19:39–45

    Article  PubMed  CAS  Google Scholar 

  21. Bowers JL, Tyulmenkov VV, Jernigan SC, Klinge CM (2000) Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology 141:3657–3667

    PubMed  CAS  Google Scholar 

  22. Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, Ruparelia KC, Lamb JH, Farmer PB, Stanley LA, Burke MD (2002) The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer 86:774–778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chang JK, Hsu YL, Teng IC, Kuo PL (2006) Piceatannol stimulates osteoblast differentiation that may be mediated by increased bone morphogenetic protein-2 production. Eur J Pharmacol 551:1–9

    Article  PubMed  CAS  Google Scholar 

  24. Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750:60–82

    Article  PubMed  CAS  Google Scholar 

  25. Zoechling A, Reiter E, Eder R, Wendelin S, Liebner F, Jungbauer A (2009) The flavonoid kaempferol is responsible for the majority of estrogenic activity in red wine. Am J Enol Vitic 60:223–232

    CAS  Google Scholar 

  26. Rassi CM, Lieberherr M, Chaumaz G, Pointillart A, Cournot G (2005) Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin. Cell Tissue Res 319:383–393

    Article  PubMed  CAS  Google Scholar 

  27. Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, Brazier M (2004) Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem 92:285–295

    Article  PubMed  CAS  Google Scholar 

  28. Hsu YL, Chang JK, Tsai CH, Chien TT, Kuo PL (2007) Myricetin induces human osteoblast differentiation through bone morphogenetic protein-2/p38 mitogen-activated protein kinase pathway. Biochem Pharmacol 73:504–514

    Article  PubMed  CAS  Google Scholar 

  29. Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65:35–42

    Article  PubMed  CAS  Google Scholar 

  30. Choi EM, Hwang JK (2003) Effects of (+)-catechin on the function of osteoblastic cells. Biol Pharm Bull 26:523–526

    Article  PubMed  CAS  Google Scholar 

  31. Dou C, Li J, Kang F, Cao Z, Yang X, Jiang H, Yang B, Xiang J, Xu J, Dong S (2014) Dual effect of cyanidin on RANKL-induced differentiation and fusion of osteoclasts. J Cell Physiol. doi:10.1002/jcp.24916 (Epub ahead of print)

    PubMed Central  Google Scholar 

  32. Moriwaki S, Suzuki K, Muramatsu M, Nomura A, Inoue F, Into T, Yoshiko Y, Niida S (2014) Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One 9:e97177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Folwarczna J, Zych M, Burczyk J, Trzeciak H, Trzeciak HI (2009) Effects of natural phenolic acids on the skeletal system of ovariectomized rats. Planta Med 75:1567–1572

    Article  PubMed  CAS  Google Scholar 

  34. Zych M, Folwarczna J, Pytlik M, Sliwiński L, Gołden MA, Burczyk J, Trzeciak HI (2010) Administration of caffeic acid worsened bone mechanical properties in female rats. Planta Med 76:407–411

    Article  PubMed  CAS  Google Scholar 

  35. Zych M, Folwarczna J, Trzeciak HI (2009) Natural phenolic acids may increase serum estradiol level in ovariectomized rats. Acta Biochim Pol 56:503–507

    PubMed  CAS  Google Scholar 

  36. Mei J, Yeung SS, Kung AW (2001) High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 86:5217–5221

    Article  PubMed  CAS  Google Scholar 

  37. Welch A, MacGregor A, Jennings A, Fairweather-Tait S, Spector T, Cassidy A (2012) Habitual flavonoid intakes are positively associated with bone mineral density in women. J Bone Miner Res 27:1872–1878

    Article  PubMed  CAS  Google Scholar 

  38. Venkat KK, Arora MM, Singh P, Desai M, Khatkhatay I (2009) Effect of alcohol consumption on bone mineral density and hormonal parameters in physically active male soldiers. Bone 45:449–454

    Article  PubMed  CAS  Google Scholar 

  39. Klein RF, Fausti KA, Carlos AS (1996) Ethanol inhibits human osteoblastic cell proliferation. Alcohol Clin Exp Res 20:572–578

    Article  PubMed  CAS  Google Scholar 

  40. Broulik PD, Vondrova J, Ruzicka P, Sedlacek R, Zima T (2010) The effect of chronic alcohol administration on bone mineral content and bone strength in male rats. Physiol Res 59:599–604

    PubMed  CAS  Google Scholar 

  41. Ginsburg ES, Mello NK, Mendelson JH, Barbieri RL, Teoh SK, Rothman M, Gao X, Sholar JW (1996) Effects of alcohol ingestion on estrogens in postmenopausal women. JAMA 276:1747–1751

    Article  PubMed  CAS  Google Scholar 

  42. Feskanich D, Korrick SA, Greenspan SL, Rosen HN, Colditz GA (1999) Moderate alcohol consumption and bone density among postmenopausal women. J Womens Health 8:65–73

    Article  PubMed  CAS  Google Scholar 

  43. Rapuri PB, Gallagher JC, Balhorn KE, Ryschon KL (2000) Alcohol intake and bone metabolism in elderly women. Am J Clin Nutr 72:1206–1213

    PubMed  CAS  Google Scholar 

  44. Ilich JZ, Brownbill RA, Tamborini L, Crncevic-Orlic Z (2002) To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women? J Am Coll Nutr 21:536–544

    Article  PubMed  Google Scholar 

  45. Kubo JT, Stefanick ML, Robbins J, Wactawski-Wende J, Cullen MR, Freiberg M, Desai M (2013) Preference for wine is associated with lower hip fracture incidence in post-menopausal women. BMC Womens Health 13:36

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fairweather-Tait SJ, Skinner J, Guile GR, Cassidy A, Spector TD, MacGregor AJ (2011) Diet and bone mineral density study in postmenopausal women from the TwinsUK registry shows a negative association with a traditional English dietary pattern and a positive association with wine. Am J Clin Nutr 94:1371–1375

    Article  PubMed  CAS  Google Scholar 

  47. Marrone JA, Maddalozzo GF, Branscum AJ, Hardin K, Cialdella-Kam L, Philbrick KA, Breggia AC, Rosen CJ, Turner RT, Iwaniec UT (2012) Moderate alcohol intake lowers biochemical markers of bone turnover in postmenopausal women. Menopause 19:974–979

    PubMed  Google Scholar 

  48. Sommer I, Erkkila AT, Jarvinen R, Mursu J, Sirola J, Jurvelin JS, Kröger H, Tuppurainen M (2013) Alcohol consumption and bone mineral density in elderly women. Public Health Nutr 16:704–712

    Article  PubMed  Google Scholar 

  49. Ganry O, Baudoin C, Fardellone P (2000) Effect of alcohol intake on bone mineral density in elderly women: the EPIDOS study. Epidemiologie de l’Osteoporose. Am J Epidemiol 151:773–780

    Article  PubMed  CAS  Google Scholar 

  50. Holbrook TL, Barrett-Connor E (1993) A prospective study of alcohol consumption and bone mineral density. BMJ 306:1506–1509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Felson DT, Zhang Y, Hannan MT, Kannel WB, Kiel DP (1995) Alcohol intake and bone mineral density in elderly men and women. The Framingham study. Am J Epidemiol 142:485–492

    PubMed  CAS  Google Scholar 

  52. Tucker KL, Chen H, Hannan MT, Cupples LA, Wilson PW, Felson D, Kiel DP (2002) Bone mineral density and dietary patterns in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 76:245–252

    PubMed  CAS  Google Scholar 

  53. Wosje KS, Kalkwarf KJ (2007) Bone density in relation to alcohol intake among men and women in the United States. Osteoporosis Int 18:391–400

    Article  CAS  Google Scholar 

  54. Mukamal KJ, Robbins JA, Cauley JA, Kern LM, Siscovick DS (2007) Alcohol consumption, bone density, and hip fracture among older adults: the cardiovascular health study. Osteoporos Int 18:593–602

    Article  PubMed  CAS  Google Scholar 

  55. Tucker KL, Jugdaohsingh R, Powell JJ, Qiao N, Hannan MT, Sripanyakorn S, Cupples LA, Kiel DP (2009) Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am J Clin Nutr 89:1188–1196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yin J, Winzenberg T, Quinn S, Giles G, Jones G (2011) Beverage-specific alcohol intake and bone loss in older men and women: a longitudinal study. Eur J Clin Nutr 65:526–532

    Article  PubMed  CAS  Google Scholar 

  57. Jin LH, Chang SJ, Koh SB, Kim KS, Lee TY, Ryu SY, Song JS, Park JK (2011) Association between alcohol consumption and bone strength in Korean adults: the Korean genomic rural cohort study. Metabolism 60:351–358

    Article  PubMed  CAS  Google Scholar 

  58. Kröger H, Tuppurainen M, Honkanen R, Alhava E, Saarikoski S (1994) Bone mineral density and risk factors for osteoporosis-a population-based study of 1600 perimenopausal women. Calcif Tissue Int 55:1–7

    Article  PubMed  Google Scholar 

  59. Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79:155–165

    PubMed  CAS  Google Scholar 

  60. McLernon DJ, Powell JJ, Jugdaohsingh R, Macdonald HM (2012) Do lifestyle choices explain the effect of alcohol on bone mineral density in women around menopause? Am J Clin Nutr 95:1261–1269

    Article  PubMed  CAS  Google Scholar 

  61. Keppler K, Humpf HU (2005) Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem 13:5195–5205

    Article  PubMed  CAS  Google Scholar 

  62. Brizic I, Modun D, Vukovic J, Budimir D, Katalinic V, Boban M (2009) Differences in vasodilatory response to red wine in rat and guinea pig aorta. J Cardiovasc Pharmacol 53:116–120

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Budimir Mršić.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutleša, Z., Budimir Mršić, D. Wine and bone health: a review. J Bone Miner Metab 34, 11–22 (2016). https://doi.org/10.1007/s00774-015-0660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0660-8

Keywords

Navigation