Skip to main content
Log in

IGRT: Bildgesteuerte Strahlentherapie

Eine Übersicht von der planaren röntgenbasierten Positionierung zum Cone-Beam-CT

IGRT: image guidance in radiation oncology

A review from planar x-ray based positioning to cone beam CT

  • Update Onkologie
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Das Ziel in der modernen Strahlentherapie ist die Verabreichung von hohen Bestrahlungsdosen im Zielvolumen bei gleichzeitiger Schonung der umgebenden gesunden Organe. Voraussetzung für diese meist fraktioniert durchgeführte Therapie ist eine präzise Immobilisierung des Patienten bzw. des Tumors und Positionierung des Isozentrums vor jeder Behandlung. Besonders problematisch sind diese Vorgänge in extrakraniellen Regionen, wo sich der Tumor wegen Atembewegung oder Organfüllung bewegt und damit seine Position in Bezug auf einen knöchernen Referenzpunkt stetig ändert. Bei Hochpräzisionstechniken wie z. B. IMRT mit steilen Dosisgradienten führt diese Ungenauigkeit zu bedeutenden Unsicherheiten in der Bestrahlungsplanung.

Diese Übersicht beschreibt neue Möglichkeiten zur Optimierung der Patientenimmobilisierung (Atemsteuerung, Gating) und fasst dann die bildgestützen Ansätze zur Zielvolumen-Positionierung (bildgestützte Strahlentherapie; IGRT) zusammen. Dabei werden 2D-Methoden (Röntgenfilme, EPID), 2D–3D-Methoden (bidirektionale EPID-Lokalisation unter Verwendung implantierter Marker, ggf. unterstützt durch Infrarot-Positionierung) und echte 3D-Positionierungssysteme (In-Room-CT und ultraschallbasierte Positionierung) beschrieben.

Abstract

In most clinical situations, the purpose of radiotherapy is to apply high doses to the target volume as well as the protection of organs at risk from the side effects of radiation. For biological reasons, radiation is usually administered as a fractionated therapy, which requires reproducibly precise immobilisation of the patient and positioning of the radiation isocenter in the correct location in relation to tumor geometry before each treatment. This allows a maximum reduction in the “safety margin” around the target volume. Positioning for extracranial regions is problematic because of the movement of the tumor in relation to bony structures, e.g. due to breathing or organ filling. This uncertainty leads to difficulties in establishing high precision techniques such as intensity modulated radiation therapy in the extracranial regions.

This overview discusses image guided radiotherapy (IGRT) techniques. Immobilisation strategies (breath holding, gating) and position verification techniques based on 2D image-guidance (port films, EPID), 2D–3D guidance (bidirectional EPID localization in combination with implanted fiducial markers and optional supplementary infrared positioning) as well true 3D image guidance possibilities such as ultrasound-based positioning systems and in-room CTs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Starkschall G, Forster KM, Kitamura K, Cardenas A, Tucker SL, Stevens CW (2004) Correlation of gross tumor volume excursion with potential benefits of respiratory gating. Int J Radiat Oncol Biol Phys 60:1291–1297

    Article  PubMed  Google Scholar 

  2. Giraud P, Reboul F, Clippe S et al. (2003) Respiration-gated radiotherapy: current techniques and potential benefits. Cancer Radiother 7 [Suppl] 1:15 s–25 s

    Google Scholar 

  3. Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: Pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63(1):5–24

    Article  PubMed  Google Scholar 

  4. Lohr F, Debus J, Frank C, Herfarth K, Pastyr O, Rhein B, Bahner ML, Schlegel W, Wannenmacher, M (1999) Noninvasive patient fixation for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 45:521–527

    Article  PubMed  Google Scholar 

  5. Hof H, Herfarth KK, Munter M, Hoess A, Motsch J, Wannenmacher M, Debus JJ (2003) Stereotactic single-dose radiotherapy of stage I non-small-cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 56:335–341

    PubMed  Google Scholar 

  6. Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, Martinez AA (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    Article  PubMed  Google Scholar 

  7. Herfarth KK, Debus J, Lohr F, Bahner ML, Fritz P, Hoss A, Schlegel W, Wannenmacher MF (2000) Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys 46:329–335

    Article  PubMed  Google Scholar 

  8. Hanley J, Debois MM, Mah D et al. (1999) Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 45:603–611

    Article  PubMed  Google Scholar 

  9. Hoisak JD, Sixel KE, Tirona R, Cheung PC, Pignol JP (2004) Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys 60:1298–1306

    Article  PubMed  Google Scholar 

  10. Kirby MC, Atherton S, Carson P, McDonagh C, Sykes JR, Williams PC (1999) The performance of a fluoroscopic electronic portal imaging device modified for portability. Br J Radiol 72:1000–1005

    PubMed  Google Scholar 

  11. Boyer AL, Antonuk L, Fenster A, Van Herk M, Meertens H, Munro P, Reinstein LE, Wong J (1992) A review of electronic portal imaging devices (EPIDs). Med Phys 19:1–16

    Article  PubMed  Google Scholar 

  12. Ryu S, Fang Yin F, Rock J et al. (2003) Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer 97:2013–2018

    Article  PubMed  Google Scholar 

  13. Verellen D, Soete G, Linthout N et al. (2003) Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging. Radiother Oncol 67:129–141

    Article  PubMed  Google Scholar 

  14. Weiss E, Vorwerk H, Richter S, Hess CF (2003) Interfractional and intrafractional accuracy during radiotherapy of gynecologic carcinomas: a comprehensive evaluation using the ExacTrac system. Int J Radiat Oncol Biol Phys 56:69–79

    Article  PubMed  Google Scholar 

  15. Bogner J, Petersch B, Georg D, Dieckmann K, Zehetmayer M, Potter R (2003) A noninvasive eye fixation and computer-aided eye monitoring system for linear accelerator-based stereotactic radiotherapy of uveal melanoma. Int J Radiat Oncol Biol Phys 56:1128–1136

    Article  PubMed  Google Scholar 

  16. Soete G, Van de Steene J, Verellen D et al. (2002) Initial clinical experience with infrared-reflecting skin markers in the positioning of patients treated by conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 52:694–698

    Article  PubMed  Google Scholar 

  17. Gerszten PC, Ozhasoglu C, Burton SA, Kalnicki S, Welch WC (2002) Feasibility of frameless single-fraction stereotactic radiosurgery for spinal lesions. Neurosurg Focus 13, e2

  18. Lohr F, Fuss M, Tiefenbacher U et al. (2004) Optimizing the use of radiotherapy with IMRT and image guided location of advanced prostate cancer. Urologe A 43:43–51

    Article  PubMed  Google Scholar 

  19. Fuss M, Salter BJ, Cavanaugh SX et al. (2004) Daily ultrasound-based image-guided targeting for radiotherapy of upper abdominal malignancies. Int J Radiat Oncol Biol Phys 59:1245–1256

    Article  PubMed  Google Scholar 

  20. Langen KM, Pouliot J, Anezinos C et al. (2003) Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 57:635–644

    Article  PubMed  Google Scholar 

  21. Wieland P, Dobler B, Mai S et al. (2004) IMRT for postoperative treatment of gastric cancer: covering large target volumes in the upper abdomen: a comparison of a step-and-shoot and an arc therapy approach. Int J Radiat Oncol Biol Phys 59:1236–1244

    Article  PubMed  Google Scholar 

  22. Jaffray DA, Chawla K, Yu C, Wong JW (1995) Dual-beam imaging for online verification of radiotherapy field placement. Int J Radiat Oncol Biol Phys 33:1273–1280

    Article  PubMed  Google Scholar 

  23. Groh BA, Siewerdsen JH, Drake DG, Wong JW, Jaffray DA (2002) A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phys 29:967–975

    Article  PubMed  Google Scholar 

  24. Pouliot J, Bani-Hashemi A, Chen J et al. (2005) Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 61:552–560

    Article  PubMed  Google Scholar 

  25. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Boda-Heggemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boda-Heggemann, J., Walter, C., Mai, S. et al. IGRT: Bildgesteuerte Strahlentherapie. Onkologe 12, 365–372 (2006). https://doi.org/10.1007/s00761-005-1000-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-005-1000-8

Schlüsselwörter

Keywords

Navigation