Skip to main content
Log in

Zelluläre Regulation des Anabolismus und Katabolismus der Skelettmuskulatur bei Immobilität, im Alter und bei kritisch Kranken

Cellular regulation of anabolism and catabolism in skeletal muscle during immobilisation, aging and critical illness

  • Übersicht
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Skeletal muscle atrophy is associated with situations of acute and chronical illness, such as sepsis, surgery, trauma and immobility. Additionally, it is a common problem during the physiological process of aging. The myofibrillar proteins myosin and actin, which are essential for muscle contraction, are the major targets during the process of protein degradation. This leads to a general loss of muscle mass, muscle strength and to increased muscle fatigue. In critically ill or immobile patients skeletal muscle atrophy is accompanied by enhanced inflammation, reduced wound healing, weaning complications and difficulties in mobilisation. During aging it results in falls, fractures, physical injuries and loss of mobility. Relating to the primary stimulators – hormones, muscle lengthening, stress, inflammation, neuronal activity – research is now focusing on the investigation of the signal transduction pathways, which influence protein synthesis and protein degradation during skeletal muscle atrophy.

Zusammenfassung

Die Atrophie der Skelettmuskulatur ist eine Begleiterscheinung bei einer Vielzahl von akuten und chronischen Erkrankungen, wie Sepsis, chirurgische Interventionen, Trauma oder Immobilität. Auch während des Alterungsprozesses kommt es zu einem massiven allgemeinen Muskelabbau. Davon betroffen sind insbesondere die für die Muskelkontraktion notwendigen myofibrillären Proteine Myosin und Aktin, wodurch ein Verlust an Muskelmasse und Muskelkraft sowie eine beschleunigte Muskelermüdung entsteht. Die Folgen sind beim kritisch Kranken oder immobilen Patienten erhöhte Infektionsraten, verlangsamte Wundheilung, Komplikationen bei der Entwöhnung von der Beatmung und erschwerte Mobilisation. Im Alter führt dies zu Stürzen, Knochenbrüchen, Verletzungen und Mobilitätsverlust. Ausgehend von den primären Stimulatoren – Hormone, Muskeldehnung, Stress, Inflammation, neuronale Aktivität – konzentriert sich die Wissenschaft auf die Erforschung der Signaltransduktionswege, die zu einer Beeinflussung der Proteinsynthese und des Proteinabbaus bei Atrophien des Skelettmuskels führen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Costelli P, Tullio RD, Baccino FM, Melloni E (2001) Activation of Ca(2+)-dependent proteolysis in skeletal muscle and heart in cancer cachexia. Br J Cancer 84: 946–950

    Article  PubMed  CAS  Google Scholar 

  • Valdez H, Lederman MM (1997) Cytokines and cytokine therapies in HIV infection. AIDS Clin Rev 187–228

  • Franssen FM, Wouters EF, Schols AM (2002) The contribution of starvation, deconditioning and ageing to the observed alterations in peripheral skeletal muscle in chronic organ diseases. Clin Nutr 21: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Mitch WE, Du J (2004) Cellular mechanisms causing loss of muscle mass in kidney disease. Semin Nephrol 24: 484–487

    PubMed  CAS  Google Scholar 

  • Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, Harrington D, Kox WJ, Poole-Wilson PA, Coats AJ (1997) Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349: 1050–1053

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom J (1995) Nutrition and mortality in hemodialysis. J Am Soc Nephrol 6: 1329–1341

    PubMed  CAS  Google Scholar 

  • Windsor JA, Hill GL (1988) Risk factors for postoperative pneumonia. The importance of protein depletion. Ann Surg 208: 209–214

    Article  PubMed  CAS  Google Scholar 

  • Delle Karth G, Meyer B, Bauer S, Nikfardjam M, Heinz G (2006) Outcome and functional capacity after prolonged intensive care unit stay. Wien Klin Wochenschr 118: 390–396

    Article  PubMed  Google Scholar 

  • Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, et al (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348: 683–693

    Article  PubMed  Google Scholar 

  • Hulsmann M, Quittan M, Berger R, Crevenna R, Springer C, Nuhr M, Mortl D, Moser P, Pacher R (2004) Muscle strength as a predictor of long-term survival in severe congestive heart failure. Eur J Heart Fail 6: 101–107

    Article  PubMed  Google Scholar 

  • Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, White L (1999) Midlife hand grip strength as a predictor of old age disability. JAMA 281: 558–560

    Article  PubMed  CAS  Google Scholar 

  • Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K, Guralnik JM (2000) Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci 55: M168–M173

    PubMed  CAS  Google Scholar 

  • Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11: 211–218

    Article  PubMed  CAS  Google Scholar 

  • Rennie MJ, Edwards RH, Halliday D, Matthews DE, Wolman SL, Millward DJ (1982) Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci (Lond) 63: 519–523

    CAS  Google Scholar 

  • Bennet WM, Connacher AA, Scrimgeour CM, Smith K, Rennie MJ (1989) Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1-13C]leucine. Clin Sci (Lond) 76: 447–454

    CAS  Google Scholar 

  • Pirlich M (2004) What is malnutrition? Wien Klin Wochenschr 116: 575–578

    Article  PubMed  Google Scholar 

  • Bohe J, Low A, Wolfe RR, Rennie MJ (2003) Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol 552: 315–324

    Article  PubMed  CAS  Google Scholar 

  • Bohe J, Low JF, Wolfe RR, Rennie MJ (2001) Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol 532: 575–579

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Campbell LE, Miller CM, Proud CG (1998) Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 334: 261–267

    PubMed  CAS  Google Scholar 

  • Jefferson LS, Kimball SR (2003) Amino acids as regulators of gene expression at the level of mRNA translation. J Nutr 133: 2046S–2051S

    PubMed  CAS  Google Scholar 

  • Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S, Kadowaki M (2004) Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 279: 8452–8459

    Article  PubMed  CAS  Google Scholar 

  • Deldicque L, Theisen D, Francaux M (2005) Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol 94: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Haussinger D, Roth E, Lang F, Gerok W (1993) Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341: 1330–1332

    Article  PubMed  CAS  Google Scholar 

  • Haussinger D (1996) The role of cellular hydration in the regulation of cell function. Biochem J 313: 697–710

    PubMed  Google Scholar 

  • Fluck M, Carson JA, Gordon SE, Ziemiecki A, Booth FW (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 277: C152–C162

    PubMed  CAS  Google Scholar 

  • Martineau LC, Gardiner PF (2001) Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J Appl Physiol 91: 693–702

    PubMed  CAS  Google Scholar 

  • Nikolopoulos SN, Turner CE (2001) Integrin-linked kinase (ILK) binding to paxillin LD1 motif regulates ILK localization to focal adhesions. J Biol Chem 276: 23499–23505

    Article  PubMed  CAS  Google Scholar 

  • Vandebrouck C, Duport G, Cognard C, Raymond G (2001) Cationic channels in normal and dystrophic human myotubes. Neuromuscul Disord 11: 72–79

    Article  PubMed  CAS  Google Scholar 

  • Winegar BD, Haws CM, Lansman JB (1996) Subconductance block of single mechanosensitive ion channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol 107: 433–443

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh HH, Kaufman S (1982) Coupling of voltage-sensitive sodium channel activity to stretch-induced amino acid transport in skeletal muscle in vitro. J Biol Chem 257: 13448–13454

    PubMed  CAS  Google Scholar 

  • Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549: 409–418

    Article  PubMed  CAS  Google Scholar 

  • Yang SY, Goldspink G (2002) Different roles of the IGFI Ec peptide (MGF) and mature IGF–I in myoblast proliferation and differentiation. FEBS Lett 522: 156–160

    Article  PubMed  CAS  Google Scholar 

  • Friday BB, Horsley V, Pavlath GK (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149: 657–666

    Article  PubMed  CAS  Google Scholar 

  • Friday BB, Pavlath GK (2001) A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J Cell Sci 114: 303–310

    PubMed  CAS  Google Scholar 

  • Chevrel G, Hohlfeld R, Sendtner M (2006) The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve 33: 462–476

    Article  PubMed  CAS  Google Scholar 

  • Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18: 39–51

    Article  PubMed  CAS  Google Scholar 

  • Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306: 717–726

    Article  PubMed  CAS  Google Scholar 

  • McElhinny AS, Kakinuma K, Sorimachi H, Labeit S, Gregorio CC (2002) Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 157: 125–136

    Article  PubMed  CAS  Google Scholar 

  • Ojima K, Ono Y, Hata S, Koyama S, Doi N, Sorimachi H (2005) Possible functions of p94 in connectin-mediated signaling pathways in skeletal muscle cells. J Muscle Res Cell Motil 26: 409–417

    Article  PubMed  CAS  Google Scholar 

  • Itai Y, Kariya Y, Hoshino Y (2004) Morphological changes in rat hindlimb muscle fibres during recovery from disuse atrophy. Acta Physiol Scand 181: 217–224

    Article  PubMed  CAS  Google Scholar 

  • Munoz KA, Satarug S, Tischler ME (1993) Time course of the response of myofibrillar and sarcoplasmic protein metabolism to unweighting of the soleus muscle. Metabolism 42: 1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Taillandier D, Aurousseau E, Meynial-Denis D, Bechet D, Ferrara M, Cottin P, et al (1996) Coordinate activation of lysosomal, Ca 2+-activated and ATP-ubiquitin-dependent proteinases in the unweighted rat soleus muscle. Biochem J 316: 65–72

    PubMed  CAS  Google Scholar 

  • Fournier M, Roy RR, Perham H, Simard CP, Edgerton VR (1983) Is limb immobilization a model of muscle disuse? Exp Neurol 80: 147–156

    Article  PubMed  CAS  Google Scholar 

  • Jankala H, Harjola VP, Petersen NE, Harkonen M (1997) Myosin heavy chain mRNA transform to faster isoforms in immobilized skeletal muscle: a quantitative PCR study. J Appl Physiol 82: 977–982

    PubMed  CAS  Google Scholar 

  • Loughna PT, Izumo S, Goldspink G, Nadal-Ginard B (1990) Disuse and passive stretch cause rapid alterations in expression of developmental and adult contractile protein genes in skeletal muscle. Development 109: 217–223

    PubMed  CAS  Google Scholar 

  • Pattullo MC, Cotter MA, Cameron NE, Barry JA (1992) Effects of lengthened immobilization on functional and histochemical properties of rabbit tibialis anterior muscle. Exp Physiol 77: 433–442

    PubMed  CAS  Google Scholar 

  • Sasa T, Sairyo K, Yoshida N, Fukunaga M, Koga K, Ishikawa M, Yasui N (2004) Continuous muscle stretch prevents disuse muscle atrophy and deterioration of its oxidative capacity in rat tail-suspension models. Am J Phys Med Rehabil 83: 851–856

    Article  PubMed  Google Scholar 

  • Booth FW, Seider MJ (1979) Recovery of skeletal muscle after 3 mo of hindlimb immobilization in rats. J Appl Physiol 47: 435–439

    PubMed  CAS  Google Scholar 

  • Reynolds TH, Bodine SC, Lawrence JC (2002) Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 277: 17657–17662

    Article  PubMed  CAS  Google Scholar 

  • Hornberger TA, Hunter B, Kandarian SC, Esser KA (2001) Regulation of translation factors during hindlimb unloading and denervation of skeletal muscle in rats. Am J Physiol Cell Physiol 281: C179–C187

    PubMed  CAS  Google Scholar 

  • Biolo G, Ciocchi B, Lebenstedt M, Barazzoni R, Zanetti M, Platen P, Heer M, Guarnieri G (2004) Short-term bed rest impairs amino acid-induced protein anabolism in humans. J Physiol 558: 381–388

    Article  PubMed  CAS  Google Scholar 

  • Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78: 1969–1976

    PubMed  CAS  Google Scholar 

  • Dupont-Versteegden EE, Strotman BA, Gurley CM, Gaddy D, Knox M, Fluckey JD, Peterson CA (2006) Nuclear translocation of EndoG at the initiation of disuse muscle atrophy and apoptosis is specific to myonuclei. Am J Physiol Regul Integr Comp Physiol 291: R1730–R1740

    PubMed  CAS  Google Scholar 

  • Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC (2002) Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16: 529–538

    Article  PubMed  CAS  Google Scholar 

  • Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC (2003) Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol 551: 33–48

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG, Spencer MJ (2002) Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J Physiol 545: 819–828

    Article  PubMed  CAS  Google Scholar 

  • Vermaelen M, Marini JF, Chopard A, Benyamin Y, Mercier J, Astier C (2005) Ubiquitin targeting of rat muscle proteins during short periods of unloading. Acta Physiol Scand 185: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704–1708

    Article  PubMed  CAS  Google Scholar 

  • Krawiec BJ, Frost RA, Vary TC, Jefferson LS, Lang CH (2005) Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. Am J Physiol Endocrinol Metab 289: E969–E980

    Article  PubMed  CAS  Google Scholar 

  • Urso M, Scrimgeour AG, Chen YW, Thompson PD, Clarkson PM (2006) Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components. J Appl Physiol 101: 1136–1148

    Article  PubMed  CAS  Google Scholar 

  • Kondo H, Miura M, Itokawa Y (1993) Antioxidant enzyme systems in skeletal muscle atrophied by immobilization. Pflugers Arch 422: 404–406

    Article  PubMed  CAS  Google Scholar 

  • Siems W, Capuozzo E, Lucano A, Salerno C, Crifo C (2003) High sensitivity of plasma membrane ion transport ATPases from human neutrophils towards 4-hydroxy-2,3-trans-nonenal. Life Sci 73: 2583–2590

    Article  PubMed  CAS  Google Scholar 

  • Li YP, Chen Y, Li AS, Reid M (2003) Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 285: C806–C812

    PubMed  CAS  Google Scholar 

  • Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA (2002) Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr 76: 473–481

    PubMed  CAS  Google Scholar 

  • Larsson L, Grimby G, Karlsson J (1979) Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 46: 451–456

    PubMed  CAS  Google Scholar 

  • Murray MP, Gardner GM, Mollinger LA, Sepic SB (1980) Strength of isometric and isokinetic contractions: knee muscles of men aged 20 to 86. Phys Ther 60: 412–419

    PubMed  CAS  Google Scholar 

  • Young A, Stokes M, Crowe M (1984) Size and strength of the quadriceps muscles of old and young women. Eur J Clin Invest 14: 282–287

    PubMed  CAS  Google Scholar 

  • Morse CI, Thom JM, Birch KM, Narici MV (2005) Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand 183: 291–298

    Article  PubMed  CAS  Google Scholar 

  • Song MY, Ruts E, Kim J, Janumala I, Heymsfield S, Gallagher D (2004) Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women. Am J Clin Nutr 79: 874–880

    PubMed  CAS  Google Scholar 

  • Larsson L, Sjodin B, Karlsson J (1978) Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years. Acta Physiol Scand 103: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson F, Borg K, Edstrom L, Grimby L (1988) Use of motor units in relation to muscle fiber type and size in man. Muscle Nerve 11: 1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Juul A, Bang P, Hertel NT, Main K, Dalgaard P, Jorgensen K, Muller J, Hall K, Skakkebaek NE (1994) Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab 78: 744–752

    Article  PubMed  CAS  Google Scholar 

  • Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR (2000) The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab 85: 4481–4490

    Article  PubMed  CAS  Google Scholar 

  • Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19: 422–424

    PubMed  CAS  Google Scholar 

  • Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS (2001) Sarcopenia. J Lab Clin Med 137: 231–243

    Article  PubMed  CAS  Google Scholar 

  • Kadi F, Charifi N, Denis C, Lexell J (2004) Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 29: 120–127

    Article  PubMed  Google Scholar 

  • Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, Penninx B, Pahor M, Wallace R, Havlik RJ (1999) Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47: 639–646

    PubMed  CAS  Google Scholar 

  • Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57: M326–M332

    PubMed  Google Scholar 

  • Llovera M, Garcia-Martinez C, Agell N, Lopez-Soriano FJ, Argiles JM (1997) TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem Biophys Res Commun 230: 238–241

    Article  PubMed  CAS  Google Scholar 

  • Clowes GH Jr, George BC, Villee CA Jr, Saravis CA (1983) Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308: 545–552

    Article  PubMed  Google Scholar 

  • Pansarasa O, Castagna L, Colombi B, Vecchiet J, Felzani G, Marzatico F (2000) Age and sex differences in human skeletal muscle: role of reactive oxygen species. Free Radic Res 33: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Finn PJ, Plank LD, Clark MA, Connolly AB, Hill GL (1996) Progressive cellular dehydration and proteolysis in critically ill patients. Lancet 347: 654–656

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RD (1996) Muscle mass, survival, and the elderly ICU patient. Nutrition 12: 456–458

    Article  PubMed  CAS  Google Scholar 

  • De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, et al (2002) Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA 288: 2859–2867

    Article  PubMed  Google Scholar 

  • Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL, Ortiz-Leyba C, Jimenez-Jimenez FJ, Barrero-Almodovar A, et al (2001) Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med 27: 1288–1296

    Article  PubMed  CAS  Google Scholar 

  • Zifko UA, Zipko HT, Bolton CF (1998) Clinical and electrophysiological findings in critical illness polyneuropathy. J Neurol Sci 159: 186–193

    Article  PubMed  CAS  Google Scholar 

  • De Letter MA, van Doorn PA, Savelkoul HF, Laman JD, Schmitz PI, Op de Coul AA, et al (2000) Critical illness polyneuropathy and myopathy (CIPNM): evidence for local immune activation by cytokine-expression in the muscle tissue. J Neuroimmunol 106: 206–213

    Article  PubMed  CAS  Google Scholar 

  • van der Schaaf M, Beelen A, de Vos R (2004) Functional outcome in patients with critical illness polyneuropathy. Disabil Rehabil 26: 1189–1197

    Article  PubMed  Google Scholar 

  • Leijten FS, Harinck-de Weerd JE, Poortvliet DC, de Weerd AW (1995) The role of polyneuropathy in motor convalescence after prolonged mechanical ventilation. JAMA 274: 1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Berek K, Margreiter J, Willeit J, Berek A, Schmutzhard E, Mutz NJ (1996) Polyneuropathies in critically ill patients: a prospective evaluation. Intensive Care Med 22: 849–855

    PubMed  CAS  Google Scholar 

  • Sakurai Y, Aarsland A, Herndon DN, Chinkes DL, Pierre E, Nguyen TT, Patterson BW, Wolfe RR (1995) Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients. Ann Surg 222: 283–297

    Article  PubMed  CAS  Google Scholar 

  • Essen P, McNurlan MA, Wernerman J, Vinnars E, Garlick PJ (1992) Uncomplicated surgery, but not general anesthesia, decreases muscle protein synthesis. Am J Physiol 262: E253–E260

    PubMed  CAS  Google Scholar 

  • Ross RJ, Miell JP, Holly JM, Maheshwari H, Norman M, Abdulla AF, Buchanan CR (1991) Levels of GH binding activity, IGFBP-1, insulin, blood glucose and cortisol in intensive care patients. Clin Endocrinol (Oxf) 35: 361–367

    CAS  Google Scholar 

  • Van den Berghe G, Wouters P, Weekers F, Mohan S, Baxter RC, Veldhuis JD, Bowers CY, Bouillon R (1999) Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab 84: 1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Hu Z, Hu J, Du J, Mitch WE (2006) Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147: 4160–4168

    Article  PubMed  CAS  Google Scholar 

  • Penner CG, Gang G, Wray C, Fischer JE, Hasselgren PO (2001) The transcription factors NF-kappa b and AP-1 are differentially regulated in skeletal muscle during sepsis. Biochem Biophys Res Commun 281: 1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Shah OJ, Anthony JC, Kimball SR, Jefferson LS (2000) Glucocorticoids oppose translational control by leucine in skeletal muscle. Am J Physiol Endocrinol Metab 279: E1185–E1190

    PubMed  CAS  Google Scholar 

  • Marinovic AC, Zheng B, Mitch WE, Price SR (2002) Ubiquitin (UbC) expression in muscle cells is increased by glucocorticoids through a mechanism involving Sp1 and MEK1. J Biol Chem 277: 16673–16681

    Article  PubMed  CAS  Google Scholar 

  • Chrysis D, Underwood LE (1999) Regulation of components of the ubiquitin system by insulin-like growth factor I and growth hormone in skeletal muscle of rats made catabolic with dexamethasone. Endocrinology 140: 5635–5641

    Article  PubMed  CAS  Google Scholar 

  • Tiao G, Fagan J, Roegner V, Lieberman M, Wang JJ, Fischer JE, Hasselgren PO (1996) Energy-ubiquitin-dependent muscle proteolysis during sepsis in rats is regulated by glucocorticoids. J Clin Invest 97: 339–348

    Article  PubMed  CAS  Google Scholar 

  • Frost RA, Nystrom GJ, Jefferson LS, Lang CH (2006) Hormone, cytokine, and nutritional regulation of sepsis-induced increases in Atrogin-1 and MuRF1 in skeletal muscle. Am J Physiol Endocrinol Metab (in press)

  • Fan J, Wojnar MM, Theodorakis M, Lang CH (1996) Regulation of insulin-like growth factor (IGF)-I mRNA and peptide and IGF-binding proteins by interleukin-1. Am J Physiol 270: R621–R629

    PubMed  CAS  Google Scholar 

  • Colson A, Willems B, Thissen JP (2003) Inhibition of TNF-alpha production by pentoxifylline does not prevent endotoxin-induced decrease in serum IGF-I. J Endocrinol 178: 101–109

    Article  PubMed  CAS  Google Scholar 

  • Lang CH, Frost RA (2007) Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor alpha. Metabolism 56: 49–57

    Article  PubMed  CAS  Google Scholar 

  • Dehoux M, Gobier C, Lause P, Bertrand L, Ketelslegers JM, Thissen JP (2007) IGF-I does not prevent myotube atrophy caused by proinflammatory cytokines despite activation of Akt/Foxo and GSK-3beta pathways and inhibition of atrogin-1 mRNA. Am J Physiol Endocrinol Metab 292: E145–E150

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Char D, Bagby GJ, Gelato MC, Lang CH (1995) Regulation of insulin-like growth factor-I (IGF-I) and IGF-binding proteins by tumor necrosis factor. Am J Physiol 269: R1204–R1212

    PubMed  CAS  Google Scholar 

  • Tiao G, Fagan JM, Samuels N, James JH, Hudson K, Lieberman M, Fischer JE, Hasselgren PO (1994) Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle. J Clin Invest 94: 2255–2264

    PubMed  CAS  Google Scholar 

  • Williams AB, Decourten-Myers GM, Fischer JE, Luo G, Sun X, Hasselgren PO (1999) Sepsis stimulates release of myofilaments in skeletal muscle by a calcium-dependent mechanism. FASEB J 13: 1435–1443

    PubMed  CAS  Google Scholar 

  • Hobler SC, Wang JJ, Williams AB, Melandri F, Sun X, Fischer JE, Hasselgren PO (1999) Sepsis is associated with increased ubiquitinconjugating enzyme E214k mRNA in skeletal muscle. Am J Physiol 276: R468–R473

    PubMed  CAS  Google Scholar 

  • Hobler SC, Williams A, Fischer D, Wang JJ, Sun X, Fischer JE, Monaco JJ, Hasselgren PO (1999) Activity and expression of the 20S proteasome are increased in skeletal muscle during sepsis. Am J Physiol 277: R434–R440

    PubMed  CAS  Google Scholar 

  • Helliwell TR, Wilkinson A, Griffiths RD, McClelland P, Palmert TEA, Bone JM (1998) Muscle fibre atrophy in critically ill patients is associated with the loss of myosin filaments and the presence of lysosomal enzymes and ubiquitin. Neuropath Appl Neurobiol 24: 507–517

    Article  CAS  Google Scholar 

  • Rabuel C, Renaud E, Brealey D, Ratajczak P, Damy T, Alves A, Habib A, Singer M, Payen D, Mebazaa A (2004) Human septic myopathy: induction of cyclooxygenase, heme oxygenase and activation of the ubiquitin proteolytic pathway. Anesthesiology 101: 583–590

    Article  PubMed  CAS  Google Scholar 

  • Fareed MU, Evenson AR, Wei W, Menconi M, Poylin V, Petkova V, Pignol B, Hasselgren PO (2006) Treatment of rats with calpain inhibitors prevents sepsis-induced muscle proteolysis independent of atrogin-1/MAFbx and MuRF1 expression. Am J Physiol Regul Integr Comp Physiol 290: R1589–R1597

    PubMed  CAS  Google Scholar 

  • Di Giovanni S, Mirabella M, D'Amico A, Tonali P, Servidei S (2000) Apoptotic features accompany acute quadriplegic myopathy. Neurology 55: 854–858

    PubMed  CAS  Google Scholar 

  • Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113: 115–123

    Article  PubMed  CAS  Google Scholar 

  • Duan X, Berthiaume F, Yarmush D, Yarmush ML (2006) Proteomic analysis of altered protein expression in skeletal muscle of rats in a hypermetabolic state induced by burn sepsis. Biochem J 397: 149–158

    Article  PubMed  CAS  Google Scholar 

  • Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR (2000) The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab 85: 4481–4490

    Article  PubMed  CAS  Google Scholar 

  • Frontera WR, Meredith CN, O'Reilly KP, Knuttgen HG, Evans WJ (1988) Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 64: 1038–1044

    PubMed  CAS  Google Scholar 

  • Frontera WR, Meredith CN, O'Reilly KP, Evans WJ (1990) Strength training and determinants of VO2max in older men. J Appl Physiol 68: 329–333

    PubMed  CAS  Google Scholar 

  • Zanotti E, Felicetti G, Maini M, Fracchia C (2003) Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest 124: 292–296

    Article  PubMed  Google Scholar 

  • Sheffield-Moore M, Urban RJ, Wolf SE, Jiang J, Catlin DH, Herndon DN, Wolfe RR, Ferrando AA (1999) Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J Clin Endocrinol Metab 84: 2705–2711

    Article  PubMed  CAS  Google Scholar 

  • Hameed M, Lange KH, Andersen JL, Schjerling P, Kjaer M, Harridge SD, Goldspink G (2004) The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol 555: 231–240

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strasser, EM., Wessner, B. & Roth, E. Zelluläre Regulation des Anabolismus und Katabolismus der Skelettmuskulatur bei Immobilität, im Alter und bei kritisch Kranken. Wien Klin Wochenschr 119, 337–348 (2007). https://doi.org/10.1007/s00508-007-0817-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-007-0817-0

Keywords

Schlüsselwörter

Navigation