Skip to main content
Log in

Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The intrapulmonary expression of aquaporin-5 (AQP5) was examined in an experimental drowning model and forensic autopsy cases to discuss the possibility for differentiation between freshwater drowning (FWD) and saltwater drowning (SWD). In animal experiments, mice were classified into four groups: (group I: FWD; group II: SWD; group III: postmortem immersion (PI); and group IV: cervical dislocation as controls. In group I, intrapulmonary AQP5 expression was significantly suppressed at both gene and protein levels, compared with the other three groups, and there was no significant difference in AQP5 expression among groups II to IV. In the next series, we examined AQP5 gene expression in human lung samples obtained from forensic autopsies at less than 48 h postmortem (nine FWD cases, five SWD cases, and 14 other cases). Although AQP5 mRNA could be detected in all lung samples under the employed experimental conditions, the intrapulmonary gene expression of AQP5 in FWD was significantly attenuated compared with the other groups. These observations imply that AQP5 expression in type I alveolar epithelial cells was suppressed by hypotonic water to prevent hemodilution from the physiological aspect. Moreover, the analysis of intrapulmonary AQP5 expression would be forensically useful for differentiation between FWD and SWD, or between FWD and PI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saukko P, Knight B (2004) Knight’s forensic pathology. Arnold, London, pp 395–411

    Google Scholar 

  2. Piette MH, De Letter EA (2005) Drowning: still a difficult autopsy diagnosis. Forensic Sci Int 63:1–9

    Google Scholar 

  3. Brinkmann B (2004) Tod im Wasser. In: Brinkmann B, Madea B (eds) Handbuh gerichtliche Medizin. Springer, Berlin, Heidelberg, pp 797–818

    Google Scholar 

  4. Morild I (1995) Pleural effusion in drowning. Am J Forensic Med Pathol 16:253–256

    Article  PubMed  CAS  Google Scholar 

  5. Zhu BL, Quan L, Li DR, Taniguchi M, Kamikodai Y, Tsuda K, Fujita MQ, Tsuji T, Maeda H (2003) Postmortem lung weight in drowning: a comparison with acute asphyxiation and cardiac death. Legal Med 5:20–26

    Article  PubMed  Google Scholar 

  6. Reidbord HE, Spitz WU (1966) Ultrastructural alterations in rat lungs. Changes after intratracheal perfusion with freshwater and seawater. Arch Pathol 81:103–111

    PubMed  CAS  Google Scholar 

  7. Brinkmann B, Fechner G, Püschel K (1983) Zur Ultrastrukturpathologie des Alveolarapparates beim experimentellen Ertrinken. Z Rechtsmed 91:47–60

    Article  PubMed  CAS  Google Scholar 

  8. Nopanitaya W, Gambill TG, Brinkhous KM (1974) Fresh water drowningPulmonary ultrastructure and systemic fibrinolysis. Arch Pathol 98:361–366

    PubMed  CAS  Google Scholar 

  9. Swann HG, Spafford NR (1951) Body salt and water changes during fresh and sea water drowning. Tex Rep Biol Med 9:356–382

    PubMed  CAS  Google Scholar 

  10. Azparren JE, Vallejo G, Reyes E, Herranz A, Snacho M (1998) Study of the diagnostic value of strontium, chloride, haemoglobin and diatoms in immersion cases. Forensic Sci Int 91:123–132

    Article  PubMed  CAS  Google Scholar 

  11. Lorente JA, Villanueva E, Hernández-Cueto C, Luna JD (1990) Plasmatic levels of atrial natriuretic peptide (ANP) in drowningA pilot study. Forensic Sci Int 44:69–75

    Article  PubMed  CAS  Google Scholar 

  12. Grandmaison GL, Leterreux M, Lasseuguette K, Alvarez JC, Mazancourt P, Durigon M (2006) Study of the diagnostic value of iron in fresh water drowning. Forensic Sci Int 157:117–120

    Article  PubMed  CAS  Google Scholar 

  13. Azparren JE, Perucha E, Martinez P, Munoz R, Vallejo G (2006) Factors affecting strontium absorption in drownings. Forensic Sci Int 168:138–142

    Article  PubMed  CAS  Google Scholar 

  14. Brinkmann B, Hernandez MA, Karger B, Ortmann C (1997) Pulmonary myelomonocyte subtypes in drowning and other causes of death. Int J Legal Med 110:295–298

    Article  PubMed  CAS  Google Scholar 

  15. Zhu BL, Ishida K, Quan L, Li DR, Taniguchi M, Fujita MQ, Maeda H, Tsuji T (2002) Pulmonary immunohistochemistry and serum levels of a surfactant-associated protein A in fatal drowning. Legal Med 4:1–6

    Article  PubMed  Google Scholar 

  16. Verkman AS, Michael A, Matthay MA, Song Y (2000) Aquaporin water channels and lung physiology. Am J Physiol Cell Mol Physiol 278:867–879

    Google Scholar 

  17. King LS, Agre P (2001) Man is not a rodentAquaporins in the airways. Am J Respir Cell Mol Biol 24:221–223

    PubMed  CAS  Google Scholar 

  18. Verkman AS (2002) Aquaporin water channels and endothelial cell function. J Anat 200:617–627

    Article  PubMed  CAS  Google Scholar 

  19. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    Article  PubMed  CAS  Google Scholar 

  20. Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3:5–13

    Article  PubMed  CAS  Google Scholar 

  21. Hoffert JD, Leitch V, Agre P, King LS (2000) Hypertonic induction of aquaporin-5 expression through an ERK-dependent pathway. J Biol Chem 275:9070–9077

    Article  PubMed  CAS  Google Scholar 

  22. Locali RF, Almeida M, Oliveira-Junior IS (2006) Use of the histopathology in the differential diagnosis of drowning in fresh and salty water: an experimental model establishment in rats. Acta Cir Bras 21:203–206

    Article  PubMed  Google Scholar 

  23. Hayashi T, Ishida Y, Kimura A, Iwakura Y, Mukaida N, Kondo T (2007) IFN-gamma protects cerulein-induced acute pancreatitis by repressing NF-kappa B activation. J Immunol 178:7385–7394

    PubMed  CAS  Google Scholar 

  24. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  PubMed  CAS  Google Scholar 

  25. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274

    Article  PubMed  CAS  Google Scholar 

  26. Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1999) Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 274:20071–20074

    Article  PubMed  CAS  Google Scholar 

  27. Ma T, Fukuda N, Song Y, Matthay MA, Verkman AS (2000) Lung fluid transport in aquaporin-5 knockout mice. J Clin Invest 105:93–100

    Article  PubMed  CAS  Google Scholar 

  28. Swann HG, Brucer M, Moore C (1947) Fresh water and sea water drowning: a study of the terminal cardiac and biochemical events. Tex Rep Biol Med 5:423–428

    PubMed  CAS  Google Scholar 

  29. Swann HG, Brucer M (1949) The cardiorespiratory and biochemical events during rapid anoxic death. Fresh water and sea water drowning. Tex Rep Biol Med 7:604–618

    PubMed  CAS  Google Scholar 

  30. Miyakawa H, Woo SK, Chen CP, Dahl SC, Handler JS, Kwon HM (1998) Cis- and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity. Am J Physiol 274:753–761

    Google Scholar 

  31. Cohen DM, Wasserman JC, Gullans SR (1991) Immediate early gene and HSP70 expression in hyperosmotic stress in MDCK cells. Am J Physiol 261:594–601

    Google Scholar 

  32. Zubakov D, Hanekamp E, Kokshoorn M, van Ijcken W, Kayser M (2008) Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med 122:135–142

    Article  PubMed  Google Scholar 

  33. Heinrich M, Matt K, Lutz-Bonengel S, Schmidt U (2007) Successful RNA extraction from various human postmortem tissues. Int J Legal Med 121:136–142

    Article  PubMed  Google Scholar 

  34. Takamiya M, Saigusa K, Kumagai R, Nakayashiki N, Aoki Y (2005) Studies on mRNA expression of tissue-type plasminogen activator in bruises for wound age estimation. Int J Legal Med 119:16–21

    Article  PubMed  Google Scholar 

  35. Ishida K, Zhu BL, Maeda H (2002) A quantitative RT-PCR assay of surfactant-associated protein A1 and A2 mRNA transcripts as a diagnostic tool for acute asphyxial death. Legal Med 4:7–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Ms. Mariko Kawaguchi for her excellent assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, T., Ishida, Y., Mizunuma, S. et al. Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression. Int J Legal Med 123, 7–13 (2009). https://doi.org/10.1007/s00414-008-0235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-008-0235-5

Keywords

Navigation