Skip to main content
Log in

Pathology of clinical and preclinical Alzheimer’s disease

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized neuropathologically by the presence of amyloid plaques, neuritic plaques, and neurofibrillary tangles (NFTs). These lesions occur not only in demented individuals with AD but also in non-demented persons. In non-demented individuals, amyloid and neuritic plaques are usually accompanied with NFTs and are considered to represent asymptomatic or preclinical AD (pre-AD) pathology. Here, we defined and characterized neuropathological differences between clinical AD, non-demented pre-AD, and non-AD control cases. Our results show that clinical AD may be defined as cases exhibiting late stages of NFT, amyloid, and neuritic plaque pathology. This is in contrast to the neuropathological changes characteristic of pre-AD, which display early stages of these lesions. Both AD and pre-AD cases often exhibit cerebral amyloid angiopathy (CAA) and granulovacuolar degeneration (GVD), and when they do, these AD-related pathologies were at early stages in pre-AD cases and at late stages in symptomatic AD. Importantly, NFTs, GVD, and CAA were also observed in non-AD cases, i.e., in cases without amyloid plaque pathology. Moreover, soluble and dispersible, high-molecular-weight amyloid β-protein (Aβ) aggregates detected by blue-native polyacrylamide gel electrophoresis were elevated in clinical AD compared to that in pre-AD and non-AD cases. Detection of NFTs, GVD, and CAA in cases without amyloid plaques, presently classified as non-AD, is consistent with the idea that NFTs, GVD, and CAA may precede amyloid plaque pathology and may represent a pre-amyloid plaque stage of pre-AD not yet considered in the current recommendations for the neuropathological diagnosis of AD. Our finding of early stages of AD-related NFT, amyloid, and GVD pathology provides a more clear definition of pre-AD cases that is in contrast to the changes in clinical AD, which is characterized by late stages of these AD-related pathologies. The observed elevation of soluble/dispersible Aβ aggregates from pre-AD compared to that in AD cases suggests that, in addition to more widespread AD-related pathologies, soluble/dispersible Aβ aggregates in the neuropil play a role in the conversion of pre-AD to clinical AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alafuzoff I, Arzberger T, Al-Sarraj S, Bodi I, Bogdanovic N, Braak H, Bugiani O, Del Tredici K, Ferrer I, Gelpi E, Giaccone G, Graeber MB, Ince P, Kamphorst W, King A, Korkolopoulou P, Kovács GG, Larionov S, Meyronet D, Monoranu C, Parchi P, Patsouris E, Roggendorf W, Seilhean D, Tagliavini F, Stadelmann-Nessler C, Streichenberger N, Thal DR, Wharton S, Kretzschmar H (2008) Staging of neurofibrillary pathology in Alzheimer’s disease. A study of the BrainNet Europe Consortium. Brain Pathol 18:484–496

    PubMed  Google Scholar 

  2. Allen N, Robinson AC, Snowden J, Davidson YS, Mann DM (2013) Patterns of cerebral amyloid angiopathy define histopathological phenotypes in Alzheimer’s disease. Neuropathol Appl Neurobiol. doi:10.1111/nan.12070

  3. Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688

    Article  PubMed  CAS  Google Scholar 

  4. Attems J, Jellinger KA (2004) Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology—a pilot study. Acta Neuropathol (Berl) 107:83–90

    Article  Google Scholar 

  5. Attems J, Thomas A, Jellinger K (2012) Correlations between cortical and subcortical tau pathology. Neuropathol Appl Neurobiol 38:582–590

    Article  PubMed  CAS  Google Scholar 

  6. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567

    Article  PubMed  CAS  Google Scholar 

  7. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  Google Scholar 

  8. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  9. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  PubMed  CAS  Google Scholar 

  10. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathological process in Alzheimer’s disease: age categories 1 year to 100 years. J Neuropathol Exp Neurol 70:960–969

    Article  PubMed  CAS  Google Scholar 

  11. Capetillo-Zarate E, Staufenbiel M, Abramowski D, Haass C, Escher A, Stadelmann C, Yamaguchi H, Wiestler OD, Thal DR (2006) Selective vulnerability of different types of commissural neurons for amyloid beta-protein induced neurodegeneration in APP23 mice correlates with dendritic tree morphology. Brain 129:2992–3005

    Article  PubMed  Google Scholar 

  12. Decker H, Jurgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, Epstein AL, De Felice FG, Jerusalinsky D, Ferreira ST (2010) N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-beta peptide oligomers. J Neurochem 115:1520–1529

    Article  PubMed  CAS  Google Scholar 

  13. Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339

    Article  PubMed  CAS  Google Scholar 

  14. Dickson DW, Ksiezak-Reding H, Davies P, Yen SH (1987) A monoclonal antibody that recognizes a phosphorylated epitope in Alzheimer neurofibrillary tangles, neurofilaments and tau proteins immunostains granulovacuolar degeneration. Acta Neuropathol 73:254–258

    Article  PubMed  CAS  Google Scholar 

  15. Funk KE, Mrak RE, Kuret J (2011) Granulovacuolar degeneration bodies of Alzheimer’s disease resemble late-stage autophagic organelles. Neuropathol Appl Neurobiol 37:295–306

    Article  PubMed  CAS  Google Scholar 

  16. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  PubMed  CAS  Google Scholar 

  17. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301 l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495

    Article  PubMed  CAS  Google Scholar 

  18. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  19. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174:1241–1251

    Article  PubMed  CAS  Google Scholar 

  20. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer Dement 8:1–13

    Article  Google Scholar 

  21. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi W, Paljug WR, Debnath ML, Hope CE, Isanski BA, Hamilton RL, Dekosky ST (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–1645

    Google Scholar 

  22. Joachim CL, Morris JH, Selkoe DJ (1988) Clinically diagnosed Alzheimer’s disease: autopsy results in 150 cases. Ann Neurol 24:50–56

    Article  PubMed  CAS  Google Scholar 

  23. Kadokura A, Yamazaki T, Kakuda S, Makioka K, Lemere CA, Fujita Y, Takatama M, Okamoto K (2009) Phosphorylation-dependent TDP-43 antibody detects intraneuronal dot-like structures showing morphological characters of granulovacuolar degeneration. Neurosci Lett 463:87–92

    Article  PubMed  CAS  Google Scholar 

  24. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  25. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200

    Article  PubMed  CAS  Google Scholar 

  26. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  CAS  Google Scholar 

  27. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405

    Article  PubMed  CAS  Google Scholar 

  28. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011) Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31:6627–6638

    Article  PubMed  CAS  Google Scholar 

  29. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  30. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  PubMed  Google Scholar 

  31. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  PubMed  CAS  Google Scholar 

  32. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332

    Article  PubMed  CAS  Google Scholar 

  33. Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12:295–312

    Article  PubMed  CAS  Google Scholar 

  34. Rijal Upadhaya A, Capetillo-Zarate E, Kosterin I, Abramowski D, Kumar S, Yamaguchi H, Walter J, Fändrich M, Staufenbiel M, Thal DR (2012) Dispersible amyloid β-protein oligomers, protofibrils, and fibrils represent diffusible but not soluble aggregates: their role in neurodegeneration in amyloid precursor protein (APP) transgenic mice. Neurobiol Aging 33:2641–2660

    Article  PubMed  CAS  Google Scholar 

  35. Rijal Upadhaya A, Lungrin I, Yamaguchi H, Fändrich M, Thal DR (2012) High-molecular weight Aβ-oligomers and protofibrils are the predominant Aβ-species in the native soluble protein fraction of the AD brain. J Cell Mol Med 16:287–295

    Article  Google Scholar 

  36. Scholz W (1938) Studien zur Pathologie der Hirngefäße. II. Die drusige Entartung der Hirnarterien und -capillaren. (Eine Form seniler Gefäßerkrankung). Z Ges Neurol Psychiatr 4:694–715

    Article  Google Scholar 

  37. Schwab C, DeMaggio AJ, Ghoshal N, Binder LI, Kuret J, McGeer PL (2000) Casein kinase 1 delta is associated with pathological accumulation of tau in several neurodegenerative diseases. Neurobiol Aging 21:503–510

    Article  PubMed  CAS  Google Scholar 

  38. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    Article  PubMed  CAS  Google Scholar 

  39. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    Article  PubMed  Google Scholar 

  40. Thal DR, Del Tredici K, Ludolph AC, Hoozemans JJ, Rozemuller AJ, Braak H, Knippschild U (2011) Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 122:577–589

    Article  PubMed  CAS  Google Scholar 

  41. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD (2003) Vascular pathology in Alzheimer’s disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 62:1287–1301

    PubMed  Google Scholar 

  42. Thal DR, Papassotiropoulos A, Saido TC, Griffin WS, Mrak RE, Kölsch H, Del Tredici K, Attems J, Ghebremedhin E (2010) Capillary cerebral amyloid angiopathy identifies a distinct APOE epsilon4-associated subtype of sporadic Alzheimer’s disease. Acta Neuropathol 120:169–183

    Article  PubMed  CAS  Google Scholar 

  43. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Abeta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  44. Thal DR, Rüb U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K, Braak E, Braak H (2000) Sequence of Abeta-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748

    PubMed  CAS  Google Scholar 

  45. Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

    Article  PubMed  CAS  Google Scholar 

  46. Watt AD, Perez KA, Rembach A, Sherrat NA, Hung LW, Johanssen T, McLean CA, Kok WM, Hutton CA, Fodero-Tavoletti M, Masters CL, Villemagne VL, Barnham KJ (2013) Oligomers, fact or artefact? SDS-PAGE induces dimerization of beta-amyloid in human brain samples. Acta Neuropathol 125:549–564

    Article  PubMed  CAS  Google Scholar 

  47. Woodard JS (1962) Clinicopathologic significance of granulovacuolar degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 21:85–91

    Article  PubMed  CAS  Google Scholar 

  48. Yamaguchi H, Sugihara S, Ogawa A, Saido TC, Ihara Y (1998) Diffuse plaques associated with astroglial amyloid beta protein, possibly showing a disappearing stage of senile plaques. Acta Neuropathol 95:217–222

    Article  PubMed  CAS  Google Scholar 

  49. Yamazaki Y, Takahashi T, Hiji M, Kurashige T, Izumi Y, Yamawaki T, Matsumoto M (2010) Immunopositivity for ESCRT-III subunit CHMP2B in granulovacuolar degeneration of neurons in the Alzheimer’s disease hippocampus. Neurosci Lett 477:86–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Irina Kosterin, Mrs. Monika Riede, and Mrs. Kathrin Pruy for technical help, Dr. Kelly Del Tredici for reading and editing the manuscript and Prof. Dr. Heiko Braak for providing autopsy brains for this study. This study was supported by DFG grants TH624/4-1, TH624/6-1, and Alzheimer Forschung Initiative Grant #10,810 (DRT). Part of this study (JA) was supported by the Dunhill Medical Trust (R173/1110). Tissue for this study was provided by the Newcastle Brain Tissue Resource, which is funded in part by a grant from the UK Medical Research Council (G0400074) and by Brains for Dementia Research, a joint venture between Alzheimer’s Society and Alzheimer’s Research, UK.

Conflict of interest

DRT received a consultant honorarium from Simon-Kucher and Partners (Germany), and GE Healthcare (UK) and collaborated with Novartis Pharma Basel (Switzerland). CAFvA received honoraria for serving on the scientific advisory board of Nutricia GmbH and has received funding for travel and speaker honoraria from Sanofi-Aventis, Novartis, Pfizer, Eisai, and Nutricia GmbH, and has received research support from Heel GmbH.

This article is part of the supplement “Bridging the gap between Neurobiology and Psychosocial Medicine.” This supplement was not sponsored by outside commercial interests. It was funded by the German Association for Psychiatry and Psychotherapy (DGPPN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Rudolf Thal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thal, D.R., von Arnim, C., Griffin, W.S.T. et al. Pathology of clinical and preclinical Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 263 (Suppl 2), 137–145 (2013). https://doi.org/10.1007/s00406-013-0449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-013-0449-5

Keywords

Navigation