Skip to main content

Advertisement

Log in

Implications of maternal conditions and pregnancy course on offspring’s medical problems in adult life

  • REVIEW
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

In the last decade, numerous epidemiological, clinical and experimental data show that periconceptional, perinatal and postnatal environment determines the offspring’s risk for later-life chronic disease. For this phenomenon, the term “fetal” or “perinatal programming” is used. In exposed offspring already in childhood and early adulthood, metabolic and cardiovascular changes can be observed, leading to obesity, diabetes and hypertension. Nowadays, the mode of conception (e.g., in vitro fertilization), maternal metabolic conditions (e.g., undernutrition, overnutrition, diabetes) and complications during pregnancy (e.g., preeclampsia, intrauterine growth restriction) are suspected to be negative predictors for offspring’s long-term health. Mechanisms responsible for these effects still remain mainly unclear, but include epigenetic, transcriptional, endoplasmic reticulum stress, and reactive oxygen species. This review presents a piece of the puzzle with regards to periconceptional and early perinatal conditions determining later-life risk for chronic adult disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barker DJ (1994) Maternal and fetal origins of coronary heart disease. J R Coll Physicians Lond 28(6):544–551

    CAS  PubMed  Google Scholar 

  2. Barker DJ (2000) In utero programming of cardiovascular disease. Theriogenology 53(2):555–574

    Article  CAS  PubMed  Google Scholar 

  3. Andersen AN, Gianaroli L, Felberbaum R, de Mouzon J, Nygren KG (2006) Assisted reproductive technology in Europe, 2002. Results generated from European registers by ESHRE. Hum Reprod 21(7):1680–1697

    Article  PubMed  Google Scholar 

  4. Market-Velker BA, Fernandes AD, Mann MR (2010) Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol Reprod 83(6):938–950

    Article  CAS  PubMed  Google Scholar 

  5. Rexhaj E, Paoloni-Giacobino A, Rimoldi SF, Fuster DG, Anderegg M, Somm E et al (2013) Mice generated by in vitro fertilization exhibit vascular dysfunction and shortened life span. J Clin Invest 123(12):5052–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watkins AJ, Platt D, Papenbrock T, Wilkins A, Eckert JJ, Kwong WY et al (2007) Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc Natl Acad Sci USA 104(13):5449–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knoester M, Helmerhorst FM, Vandenbroucke JP, van der Westerlaken LA, Walther FJ, Veen S (2008) Perinatal outcome, health, growth, and medical care utilization of 5- to 8-year-old intracytoplasmic sperm injection singletons. Fertil Steril 89(5):1133–1146

    Article  PubMed  Google Scholar 

  8. Jackson RA, Gibson KA, Wu YW, Croughan MS (2004) Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol 103(3):551–563

    Article  PubMed  Google Scholar 

  9. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA (2008) Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab 93(5):1682–1688

    Article  CAS  PubMed  Google Scholar 

  10. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA (2008) Growth and development of children born after in vitro fertilization. Fertil Steril 90(5):1662–1673

    Article  PubMed  Google Scholar 

  11. Ceelen M, van Weissenbruch MM, Roos JC, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA (2007) Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. J Clin Endocrinol Metab 92(9):3417–3423

    Article  CAS  PubMed  Google Scholar 

  12. Rimoldi SF, Sartori C, Rexhaj E, Bailey DM, de Marchi SF, McEneny J, Arx Rv, Cerny D, Duplain H, Germond M, Allemann Y, Scherrer U (2015) Antioxidants improve vascular function in children conceived by assisted reproductive technologies: a randomized double-blind placebo-controlled trial. Eur J Prev Cardiol 22(11):1399–1407. doi:10.1177/2047487314535117

    Article  PubMed  Google Scholar 

  13. Tranquilli A, Dekker G, Magee L, Roberts J, Sibai S, Steyn W et al (2014) The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens 4:97–104

    CAS  PubMed  Google Scholar 

  14. Kvehaugen AS, Dechend R, Ramstad HB, Troisi R, Fugelseth D, Staff AC (2011) Endothelial function and circulating biomarkers are disturbed in women and children after preeclampsia. Hypertension 58(1):63–69

    Article  CAS  PubMed  Google Scholar 

  15. Kajantie E, Phillips DI, Andersson S, Barker DJ, Dunkel L, Forsen T et al (2002) Size at birth, gestational age and cortisol secretion in adult life: foetal programming of both hyper- and hypocortisolism? Clin Endocrinol (Oxf) 57(5):635–641

    Article  Google Scholar 

  16. Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ (2009) Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke 40(4):1176–1180

    Article  PubMed  Google Scholar 

  17. Oglaend B, Forman MR, Romundstad PR, Nilsen ST, Vatten LJ (2009) Blood pressure in early adolescence in the offspring of preeclamptic and normotensive pregnancies. J Hypertens 27(10):2051–2054

    Article  CAS  PubMed  Google Scholar 

  18. Lawlor DA, Macdonald-Wallis C, Fraser A, Nelson SM, Hingorani A, Davey Smith G et al (2012) Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J 33(3):335–345

    Article  PubMed  Google Scholar 

  19. Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y et al (2012) Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics 129(6):e1552–e1561

    Article  PubMed  Google Scholar 

  20. Jayet PY, Rimoldi SF, Stuber T, Salmon CS, Hutter D, Rexhaj E et al (2010) Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation 122(5):488–494

    Article  PubMed  Google Scholar 

  21. Whitehouse AJ, Robinson M, Newnham JP, Pennell CE (2012) Do hypertensive diseases of pregnancy disrupt neurocognitive development in offspring? Paediatr Perinat Epidemiol 26(2):101–108

    Article  PubMed  Google Scholar 

  22. Tuovinen S, Aalto-Viljakainen T, Eriksson JG, Kajantie E, Lahti J, Pesonen AK, Heinonen K, Lahti M, Osmond C, Barker DJ, Räikkönen K (2014) Maternal hypertensive disorders during pregnancy: adaptive functioning and psychiatric and psychological problems of the older offspring. BJOG 121(12):1482–1491. doi:10.1111/1471-0528

    Article  CAS  PubMed  Google Scholar 

  23. Tuovinen S, Raikkonen K, Kajantie E, Pesonen AK, Heinonen K, Osmond C et al (2010) Depressive symptoms in adulthood and intrauterine exposure to pre-eclampsia: the Helsinki Birth Cohort Study. BJOG 117(10):1236–1242

    Article  CAS  PubMed  Google Scholar 

  24. He J, Zhang A, Fang M, Fang R, Ge J, Jiang Y et al (2013) Methylation levels at IGF2 and GNAS DMRs in infants born to preeclamptic pregnancies. BMC Genom 14:472

    Article  CAS  Google Scholar 

  25. Longo S, Bollani L, Decembrino L, Di Comite A, Angelini M, Stronati M (2013) Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonat Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet 26(3):222–225

    CAS  Google Scholar 

  26. Saleem T, Sajjad N, Fatima S, Habib N, Ali SR, Qadir M (2011) Intrauterine growth retardation—small events, big consequences. Ital J Pediatr 37:41

    Article  PubMed  PubMed Central  Google Scholar 

  27. Woodall SM, Johnston BM, Breier BH, Gluckman PD (1996) Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr Res 40(3):438–443

    Article  CAS  PubMed  Google Scholar 

  28. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351(9097):173–177

    Article  CAS  PubMed  Google Scholar 

  29. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    Article  CAS  PubMed  Google Scholar 

  30. Fitzhardinge PM, Steven EM (1972) The small-for-date infant. I. Later growth patterns. Pediatrics 49(5):671–681

    CAS  PubMed  Google Scholar 

  31. Albertsson-Wikland K (1993) Characteristics of children with idiopathic short stature in the Kabi Pharmacia International Growth Study, and their response to growth hormone treatment. International Board of the Kabi Pharmacia International Growth Study. Acta Paediatr 82(Suppl 391):75–78

    Article  Google Scholar 

  32. Albertsson-Wikland K, Wennergren G, Wennergren M, Vilbergsson G, Rosberg S (1993) Longitudinal follow-up of growth in children born small for gestational age. Acta Paediatr 82(5):438–443

    Article  CAS  PubMed  Google Scholar 

  33. Tsubahara M, Shoji H, Mori M, Matsunaga N, Ikeno M, Hisata K et al (2012) Glucose metabolism soon after birth in very premature infants with small- and appropriate-for-gestational-age birth weights. Early Hum Dev 88(9):735–738

    Article  CAS  PubMed  Google Scholar 

  34. Morrison JL, Duffield JA, Muhlhausler BS, Gentili S, McMillen IC (2010) Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity. Pediatr Nephrol 25(4):669–677

    Article  PubMed  Google Scholar 

  35. Morrison JL (2008) Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol 35(7):730–743

    Article  CAS  PubMed  Google Scholar 

  36. Muhlhausler BS, Duffield JA, Ozanne SE, Pilgrim C, Turner N, Morrison JL et al (2009) The transition from fetal growth restriction to accelerated postnatal growth: a potential role for insulin signalling in skeletal muscle. J Physiol 587(Pt 17):4199–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levent E, Atik T, Darcan S, Ulger Z, Goksen D, Ozyurek AR (2009) The relation of arterial stiffness with intrauterine growth retardation. Pediatr Int Off J Japan Pediatr Soc 51(6):807–811

    Article  Google Scholar 

  38. Szostak-Wegierek D, Szamotulska K, Maj A (2011) Relationship between carotid intima-media thickness, atherosclerosis risk factors and birthweight in young males. Kardiol Polska 69(7):673–678

    PubMed  Google Scholar 

  39. Szostak-Wegierek D, Szamotulska K (2011) Fetal development and risk of cardiovascular diseases and diabetes type 2 in adult life. Medycyna Wieku Rozwojowego 15(3):203–215

    PubMed  Google Scholar 

  40. Salam RA, Das JK, Bhutta ZA (2014) Impact of intrauterine growth restriction on long-term health. Curr Opin Clin Nutr Metab Care 17(3):249–254

    Article  CAS  PubMed  Google Scholar 

  41. Dessi A, Ottonello G, Fanos V (2012) Physiopathology of intrauterine growth retardation: from classic data to metabolomics. J Matern Fetal Neonat Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet 25(Suppl 5):13–18

    CAS  Google Scholar 

  42. Rosenberg A (2008) The IUGR newborn. Semin Perinatol 32(3):219–224

    Article  PubMed  Google Scholar 

  43. Wasiluk A, Mantur M, Kemona H, Szczepanski M, Jasinska E, Milewski R (2009) Thrombopoiesis in small for gestational age newborns. Platelets 20(7):520–524

    Article  CAS  PubMed  Google Scholar 

  44. Gallaher BW, Breier BH, Keven CL, Harding JE, Gluckman PD (1998) Fetal programming of insulin-like growth factor (IGF)-I and IGF-binding protein-3: evidence for an altered response to undernutrition in late gestation following exposure to periconceptual undernutrition in the sheep. J Endocrinol 159(3):501–508

    Article  CAS  PubMed  Google Scholar 

  45. Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP (2000) Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127(19):4195–4202

    CAS  PubMed  Google Scholar 

  46. Gopalakrishnan GS, Gardner DS, Rhind SM, Rae MT, Kyle CE, Brooks AN et al (2004) Programming of adult cardiovascular function after early maternal undernutrition in sheep. Am J Physiol Regul Integr Comp Physiol 287(1):R12–R20

    Article  CAS  PubMed  Google Scholar 

  47. Rexhaj E, Bloch J, Jayet PY, Rimoldi SF, Dessen P, Mathieu C et al (2011) Fetal programming of pulmonary vascular dysfunction in mice: role of epigenetic mechanisms. Am J Physiol Heart Circ Physiol 301(1):H247–H252

    Article  CAS  PubMed  Google Scholar 

  48. Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Bleker OP (2000) Plasma lipid profiles in adults after prenatal exposure to the Dutch famine. Am J Clin Nutr 72(5):1101–1106

    CAS  PubMed  Google Scholar 

  49. de Rooij SR, Painter RC, Roseboom TJ, Phillips DI, Osmond C, Barker DJ et al (2006) Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia 49(4):637–643

    Article  CAS  PubMed  Google Scholar 

  50. Painter RC, de Rooij SR, Bossuyt PM, Phillips DI, Osmond C, Barker DJ et al (2006) Blood pressure response to psychological stressors in adults after prenatal exposure to the Dutch famine. J Hypertens 24(9):1771–1778

    Article  CAS  PubMed  Google Scholar 

  51. Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP (1999) Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr 70(5):811–816

    CAS  PubMed  Google Scholar 

  52. Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Schroeder-Tanka JM et al (2000) Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart 84(6):595–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, England LJ et al (2007) Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 30(8):2070–2076

    Article  PubMed  Google Scholar 

  54. Kim SY, England JL, Sharma JA, Njoroge T (2011) Gestational diabetes mellitus and risk of childhood overweight and obesity in offspring: a systematic review. Exp Diabetes Res 2011:541308

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dunne F, Brydon P, Smith K, Gee H (2003) Pregnancy in women with Type 2 diabetes: 12 years outcome data 1990–2002. Diabet Med J Br Diabet Assoc 20(9):734–738

    Article  CAS  Google Scholar 

  56. Kitzmiller JL, Block JM, Brown FM, Catalano PM, Conway DL, Coustan DR et al (2008) Managing preexisting diabetes for pregnancy: summary of evidence and consensus recommendations for care. Diabetes Care 31(5):1060–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Catalano PM, Ehrenberg HM (2006) The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG Int J Obstet Gynaecol 113(10):1126–1133

    Article  CAS  Google Scholar 

  58. Watkins ML, Rasmussen SA, Honein MA, Botto LD, Moore CA (2003) Maternal obesity and risk for birth defects. Pediatrics 111(5 Pt 2):1152–1158

    PubMed  Google Scholar 

  59. Vrebosch L, Bel S, Vansant G, Guelinckx I, Devlieger R (2012) Maternal and neonatal outcome after laparoscopic adjustable gastric banding: a systematic review. Obes Surg 22(10):1568–1579

    Article  CAS  PubMed  Google Scholar 

  60. Barbour LA (2014) Changing perspectives in pre-existing diabetes and obesity in pregnancy: maternal and infant short- and long-term outcomes. Curr Opin Endocrinol Diabetes Obes 21(4):257–263

    Article  CAS  PubMed  Google Scholar 

  61. Pinney SE, Simmons RA (2012) Metabolic programming, epigenetics, and gestational diabetes mellitus. Curr Diabetes Rep 12(1):67–74

    Article  CAS  Google Scholar 

  62. Ruchat SM, Hivert MF, Bouchard L (2013) Epigenetic programming of obesity and diabetes by in utero exposure to gestational diabetes mellitus. Nutr Rev 71(Suppl 1):S88–S94

    Article  PubMed  Google Scholar 

  63. Pavlinkova G, Salbaum JM, Kappen C (2009) Maternal diabetes alters transcriptional programs in the developing embryo. BMC Genom 10:274

    Article  Google Scholar 

  64. Steculorum SM, Bouret SG (2011) Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 152(11):4171–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Symonds ME, Pope M, Sharkey D, Budge H (2012) Adipose tissue and fetal programming. Diabetologia 55(6):1597–1606

    Article  CAS  PubMed  Google Scholar 

  66. Harris A, Seckl J (2011) Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 59(3):279–289

    Article  CAS  PubMed  Google Scholar 

  67. Edwards CR, Benediktsson R, Lindsay RS, Seckl JR (1993) Dysfunction of placental glucocorticoid barrier: link between fetal environment and adult hypertension? Lancet 341(8841):355–357

    Article  CAS  PubMed  Google Scholar 

  68. Murphy BE, Clark SJ, Donald IR, Pinsky M, Vedady D (1974) Conversion of maternal cortisol to cortisone during placental transfer to the human fetus. Am J Obstet Gynecol 118(4):538–541

    CAS  PubMed  Google Scholar 

  69. Benediktsson R, Calder AA, Edwards CR, Seckl JR (1997) Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol 46(2):161–166

    Article  CAS  Google Scholar 

  70. McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M et al (2001) Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab 86(10):4979–4983

    CAS  PubMed  Google Scholar 

  71. Cottrell EC, Seckl JR (2009) Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci 3:19

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dave-Sharma S, Wilson RC, Harbison MD, Newfield R, Azar MR, Krozowski ZS et al (1998) Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab 83(7):2244–2254

    CAS  PubMed  Google Scholar 

  73. Cole TJ, Blendy JA, Monaghan AP, Schmid W, Aguzzi A, Schutz G (1995) Molecular genetic analysis of glucocorticoid signaling during mouse development. Steroids 60(1):93–96

    Article  CAS  PubMed  Google Scholar 

  74. Khashan AS, McNamee R, Abel KM, Pedersen MG, Webb RT, Kenny LC et al (2008) Reduced infant birthweight consequent upon maternal exposure to severe life events. Psychosom Med 70(6):688–694

    Article  PubMed  Google Scholar 

  75. Gutteling BM, de Weerth C, Willemsen-Swinkels SH, Huizink AC, Mulder EJ, Visser GH et al (2005) The effects of prenatal stress on temperament and problem behavior of 27-month-old toddlers. Eur Child Adolesc Psychiatry 14(1):41–51

    Article  PubMed  Google Scholar 

  76. Gutteling BM, de Weerth C, Zandbelt N, Mulder EJ, Visser GH, Buitelaar JK (2006) Does maternal prenatal stress adversely affect the child’s learning and memory at age six? J Abnorm Child Psychol 34(6):789–798

    Article  PubMed  Google Scholar 

  77. O’Donnell K, O’Connor TG, Glover V (2009) Prenatal stress and neurodevelopment of the child: focus on the HPA axis and role of the placenta. Dev Neurosci 31(4):285–292

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frauke von Versen-Höynck.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Ehr, J., von Versen-Höynck, F. Implications of maternal conditions and pregnancy course on offspring’s medical problems in adult life. Arch Gynecol Obstet 294, 673–679 (2016). https://doi.org/10.1007/s00404-016-4178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-016-4178-7

Keywords

Navigation