Skip to main content
Log in

Long-term results of the augmented PFNA: a prospective multicenter trial

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Pertrochanteric fractures are increasing and their operative treatment remains under discussion. Failures needing reoperations such as a cut-out are reported to be high and are associated with multiple factors including poor bone quality, poor fracture reduction and improper implant placement. The PFNA® with perforated blade offers an option for standardized cement augmentation with a PMMA cement to provide more stability to the fracture fixation. It remains unclear if the augmentation of this implant does any harm in a longer time span. This prospective multicenter study shows clinical and radiological results with this implant with a mean follow-up time of 15 months.

Methods

In 5 European clinics, 62 patients (79 % female, mean age 85.3 years) suffering from an osteoporotic pertrochanteric fracture (AO 31) were treated with the augmented PFNA®. The primary objectives were assessment of activities of daily living, pain and mobility. Furthermore, the X-rays were analyzed for the cortical thickness index, changes of the trabecular structure around the cement and the hip joint space.

Results

The mean follow-up time was 15.3 months. We observed callus healing in all cases. The surgical complication rate was 3.2 % with no complication related to the cement augmentation. A mean volume of 3.8 ml of cement was injected and no complication was reported due to this procedure. 59.9 % reached their prefracture mobility level until follow-up. The mean hip joint space did not change significantly until follow-up and there were no signs of osteonecrosis in the follow-up X-rays. Furthermore, no blade migration was assessed.

Conclusion

This study makes us believe that the standardized augmentation of the PFNA with a perforated blade is a safe method to treat pertrochanteric femoral fractures. It leads to good functional results and is not associated with cartilage or bone necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahrengart L, Törnkvist H, Fornander P et al (2002) A randomized study of the compression hip screw and Gamma nail in 426 fractures. Clin Orthop Relat Res 401:209–222

    Article  PubMed  Google Scholar 

  2. Anglen JO, Weinstein JN (2008) Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database. J Bone Jt Surg Am 90(4):700–707

    Article  Google Scholar 

  3. Barnes R, Brown JT, Garden RS, Nicoll EA (1976) Subcapital fractures of the femur. A prospective review. J Bone Jt Surg Br 58(1):2–24

    CAS  Google Scholar 

  4. Boner V, Kuhn P, Mendel T, Gisep A (2009) Temperature evaluation during PMMA screw augmentation in osteoporotic bone—an in vitro study about the risk of thermal necrosis in human femoral heads. J Biomed Mater Res B Appl Biomater 90(2):842–848

    Article  PubMed  Google Scholar 

  5. Bryant DM, Sanders DW, Coles CP, Petrisor BA, Jeray KJ, Laflamme GY (2009) Selection of outcome measures for patients with hip fracture. J Orthop Trauma 23(6):434–441

    Article  PubMed  Google Scholar 

  6. Carlsson AM (1983) Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain 16(1):87–101

    Article  CAS  PubMed  Google Scholar 

  7. Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH (1993) Structural and cellular assessment of bone quality of proximal femur. Bone 14(3):231–242

    Article  CAS  PubMed  Google Scholar 

  8. Erhart S, Kammerlander C, El-Attal R, Schmoelz W (2012) Is augmentation a possible salvage procedure after lateral migration of the proximal femur nail antirotation? Arch Orthop Trauma Surg 132(11):1577–1581

    Article  CAS  PubMed  Google Scholar 

  9. Erhart S, Schmoelz W, Blauth M, Lenich A (2011) Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the proximal femur nail antirotation. Injury 42(11):1322–1327

    Article  CAS  PubMed  Google Scholar 

  10. Fensky F, Nuchtern JV, Kolb JP et al (2013) Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures—a biomechanical cadaver study. Injury 44(6):802–807

    Article  CAS  PubMed  Google Scholar 

  11. Fliri L, Lenz M, Boger A, Windolf M (2012) Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg 72(4):1098–1101

    PubMed  Google Scholar 

  12. Gardner MJ, Briggs SM, Kopjar B, Helfet DL, Lorich DG (2007) Radiographic outcomes of intertrochanteric hip fractures treated with the trochanteric fixation nail. Injury 38(10):1189–1196

    Article  PubMed  Google Scholar 

  13. Goffin JM, Pankaj P, Simpson AH, Seil R, Gerich TG (2013) Does bone compaction around the helical blade of a proximal femoral nail anti-rotation (PFNA) decrease the risk of cut-out? A subject-specific computational study. Bone Jt Res 2(5):79–83

    Article  CAS  Google Scholar 

  14. Heini PF, Franz T, Fankhauser C, Gasser B, Ganz R (2004) Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clin Biomech (Bristol, Avon) 19(5):506–512

    Article  Google Scholar 

  15. Hisatome T, Yasunaga Y, Ikuta Y, Fujimoto Y (2002) Effects on articular cartilage of subchondral replacement with polymethylmethacrylate and calcium phosphate cement. J Biomed Mater Res 59(3):490–498

    Article  CAS  PubMed  Google Scholar 

  16. Kammerlander C, Gebhard F, Meier C et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial. Injury 42(12):1484–1490

    Article  CAS  PubMed  Google Scholar 

  17. Kammerlander C, Gosch M, Kammerlander-Knauer U, Luger TJ, Blauth M, Roth T (2011) Long-term functional outcome in geriatric hip fracture patients. Arch Orthop Trauma Surg 131(10):1435–1444

    Article  PubMed  Google Scholar 

  18. Lenich A, Vester H, Nerlich M, Mayr E, Stockle U, Fuchtmeier B (2010) Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip—blade vs screw. Injury 41(12):1292–1296

    Article  PubMed  Google Scholar 

  19. Lindner T, Kanakaris NK, Marx B, Cockbain A, Kontakis G, Giannoudis PV (2009) Fractures of the hip and osteoporosis: the role of bone substitutes. J Bone Jt Surg Br 91(3):294–303

    Article  CAS  Google Scholar 

  20. Liu Y, Tao R, Liu F et al (2010) Mid-term outcomes after intramedullary fixation of peritrochanteric femoral fractures using the new proximal femoral nail antirotation (PFNA). Injury 41(8):810–817

    Article  PubMed  Google Scholar 

  21. Lobo-Escolar A, Joven E, Iglesias D, Herrera A (2010) Predictive factors for cutting-out in femoral intramedullary nailing. Injury 41(12):1312–1316

    Article  PubMed  Google Scholar 

  22. Loizou CL, Parker MJ (2009) Avascular necrosis after internal fixation of intracapsular hip fractures; a study of the outcome for 1023 patients. Injury 40(11):1143–1146

    Article  CAS  PubMed  Google Scholar 

  23. Mattsson P, Alberts A, Dahlberg G, Sohlman M, Hyldahl HC, Larsson S (2005) Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Jt Surg Br 87(9):1203–1209

    Article  CAS  Google Scholar 

  24. Mattsson P, Larsson S (2003) Stability of internally fixed femoral neck fractures augmented with resorbable cement. A prospective randomized study using radiostereometry. Scand J Surg 92(3):215–219

    CAS  PubMed  Google Scholar 

  25. Mattsson P, Larsson S (2004) Unstable trochanteric fractures augmented with calcium phosphate cement. A prospective randomized study using radiostereometry to measure fracture stability. Scand J Surg 93(3):223–228

    CAS  PubMed  Google Scholar 

  26. Mereddy P, Kamath S, Ramakrishnan M, Malik H, Donnachie N (2009) The AO/ASIF proximal femoral nail antirotation (PFNA): a new design for the treatment of unstable proximal femoral fractures. Injury 40(4):428–432

    Article  PubMed  Google Scholar 

  27. Murphy AJ, Ricketts D, Thomas WG (1995) Avascular necrosis of the femoral head following pertrochanteric fracture. Injury 26(5):351–352

    Article  CAS  PubMed  Google Scholar 

  28. Oken MM, Creech RH, Tormey DC et al (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5(6):649–655

    Article  CAS  PubMed  Google Scholar 

  29. Parker MJ, Palmer CR (1993) A new mobility score for predicting mortality after hip fracture. J Bone Jt Surg Br 75(5):797–798

    CAS  Google Scholar 

  30. Pervez H, Parker MJ, Vowler S (2004) Prediction of fixation failure after sliding hip screw fixation. Injury 35(10):994–998

    Article  PubMed  Google Scholar 

  31. Sah AP, Thornhill TS, Leboff MS, Glowacki J (2007) Correlation of plain radiographic indices of the hip with quantitative bone mineral density. Osteoporos Int 18(8):1119–1126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Saudan M, Lubbeke A, Sadowski C, Riand N, Stern R, Hoffmeyer P (2002) Pertrochanteric fractures: is there an advantage to an intramedullary nail?: A randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J Orthop Trauma 16(6):386–393

    Article  PubMed  Google Scholar 

  33. Sermon A, Boner V, Boger A et al (2012) Potential of polymethylmethacrylate cement-augmented helical proximal femoral nail antirotation blades to improve implant stability–a biomechanical investigation in human cadaveric femoral heads. J Trauma Acute Care Surg 72(2):E54–E59

    CAS  PubMed  Google Scholar 

  34. Sermon A, Boner V, Schwieger K et al (2012) Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density. Clin Biomech (Bristol, Avon) 27(1):71–76

    Article  CAS  Google Scholar 

  35. Simmermacher RK, Ljungqvist J, Bail H et al (2008) The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury 39(8):932–939

    Article  CAS  PubMed  Google Scholar 

  36. Simpson AH, Varty K, Dodd CA (1989) Sliding hip screws: modes of failure. Injury 20(4):227–231

    Article  CAS  PubMed  Google Scholar 

  37. Stoffel KK, Leys T, Damen N, Nicholls RL, Kuster MS (2008) A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clin Biomech (Bristol, Avon) 23(1):45–51

    Article  Google Scholar 

  38. Takigami I, Ohnishi K, Ito Y et al (2011) Acetabular perforation after medial migration of the helical blade through the femoral head after treatment of an unstable trochanteric fracture with proximal femoral nail antirotation (PFNA): a case report. J Orthop Trauma 25(9):e86–e89

    Article  PubMed  Google Scholar 

  39. Vidyadhara S, Rao SK (2007) One and two femoral neck screws with intramedullary nails for unstable trochanteric fractures of femur in the elderly—randomised clinical trial. Injury 38(7):806–814

    Article  CAS  PubMed  Google Scholar 

  40. von der Linden P, Gisep A, Boner V, Windolf M, Appelt A, Suhm N (2006) Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 24(12):2230–2237

    Article  PubMed  Google Scholar 

  41. von Steyern FV, Kristiansson I, Jonsson K, Mannfolk P, Heinegard D, Rydholm A (2007) Giant-cell tumour of the knee: the condition of the cartilage after treatment by curettage and cementing. J Bone Jt Surg Br 89(3):361–365

    Article  Google Scholar 

  42. Watanabe Y, Minami G, Takeshita H, Fujii T, Takai S, Hirasawa Y (2002) Migration of the lag screw within the femoral head: a comparison of the intramedullary hip screw and the Gamma Asia-Pacific nail. J Orthop Trauma 16(2):104–107

    Article  PubMed  Google Scholar 

  43. Welch RD, Berry BH, Crawford K et al (2002) Subchondral defects in caprine femora augmented with in situ setting hydroxyapatite cement, polymethylmethacrylate, or autogenous bone graft: biomechanical and histomorphological analysis after two-years. J Orthop Res 20(3):464–472

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kammerlander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kammerlander, C., Doshi, H., Gebhard, F. et al. Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134, 343–349 (2014). https://doi.org/10.1007/s00402-013-1902-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-013-1902-7

Keywords

Navigation