Skip to main content
Log in

Biomarkers: optimizing treatment guidance in heart failure

  • Review
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Heart failure is a frequent and life-threatening syndrome which is not only the result of myocardial injury or hemodynamic overload as commonly perceived, but appears to be the result of an interplay among genetic, neurohormonal, inflammatory, and biochemical factors, collectively referred to as biomarkers. Biomarkers can become risk factors in case their therapeutic modification results in an improvement of clinical outcomes. Among those markers identified in patients with heart failure, a number appears to have direct clinical relevance in aiding diagnosis, risk stratification, monitoring therapy, and treating to targets in order to improve clinical outcomes. These include brain natriuretic peptides (e.g., BNP, NT-proBNP), inflammatory markers (e.g., hsCRP), neurohormones (e.g., aldosterone), cardiorenal markers (e.g., cycstatin C), and novel markers (e.g., galectin-3). While their utility to indicate risk is mostly well established, there are less data to establish that a treatment using biomarkers as a guidance results in better outcomes than a more generalized intensified treatment of patients with heart failure. Future directions may involve larger platforms that facilitate to simultaneously analyze hundreds of biomarkers and may help to tailor heart failure therapy on a single patient basis, considering the specific pathogenesis and prognosis. Also from a therapeutic perspective there are data that a single intervention such as aldosterone blockade may affect multiple biomarkers at the same time. Taken together the data indicate that biomarkers are evolving into a valuable addendum to the diagnostic and therapeutic armamentarium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Stromberg A, van Veldhuisen DJ et al (2008) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 29:2388–2442

    Article  PubMed  CAS  Google Scholar 

  2. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E et al (2010) Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121:e46–e215

    Article  PubMed  Google Scholar 

  3. Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93:1137–1146

    Article  PubMed  Google Scholar 

  4. Gatta G, Capocaccia R, De Angelis R, Stiller C, Coebergh JW (2003) Cancer survival in European adolescents and young adults. Eur J Cancer 39:2600–2610

    Article  PubMed  CAS  Google Scholar 

  5. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  PubMed  CAS  Google Scholar 

  6. Lee DS, Vasan RS (2005) Novel markers for heart failure diagnosis and prognosis. Curr Opin Cardiol 20:201–210

    Article  PubMed  Google Scholar 

  7. de Virginy DR (2006) Novel and potential future biomarkers for assessment of the severity and prognosis of chronic heart failure: a clinical review. Heart Fail Rev 11:333–334

    Article  PubMed  Google Scholar 

  8. Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159

    Article  PubMed  CAS  Google Scholar 

  9. Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, van Veldhuisen DJ (2010) Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol 99:323–328

    Article  PubMed  CAS  Google Scholar 

  10. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, van Veldhuisen DJ (2011) Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 43:60–68

    Article  PubMed  Google Scholar 

  11. McKelvie RS, Komajda M, McMurray J, Zile M, Ptaszynska A, Donovan M, Carson P, Massie BM (2010) Baseline plasma NT-proBNP and clinical characteristics: results from the irbesartan in heart failure with preserved ejection fraction trial. J Card Fail 16:128–134

    Article  PubMed  CAS  Google Scholar 

  12. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Stromberg A, van Veldhuisen DJ et al (2008) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 10:933–989

    Article  PubMed  Google Scholar 

  13. Jensen J, Ma LP, Fu ML, Svaninger D, Lundberg PA, Hammarsten O (2010) Inflammation increases NT-proBNP and the NT-proBNP/BNP ratio. Clin Res Cardiol 99:445–452

    Article  PubMed  CAS  Google Scholar 

  14. Doust JA, Pietrzak E, Dobson A, Glasziou P (2005) How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ 330:625

    Article  PubMed  CAS  Google Scholar 

  15. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, Storrow AB et al (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347:161–167

    Article  PubMed  CAS  Google Scholar 

  16. Tang WH, Francis GS, Morrow DA, Newby LK, Cannon CP, Jesse RL, Storrow AB, Christenson RH et al (2007) National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: clinical utilization of cardiac biomarker testing in heart failure. Circulation 116:e99–e109

    Article  PubMed  CAS  Google Scholar 

  17. Grewal J, McKelvie RS, Persson H, Tait P, Carlsson J, Swedberg K, Ostergren J, Lonn E (2008) Usefulness of N-terminal pro-brain natriuretic Peptide and brain natriuretic peptide to predict cardiovascular outcomes in patients with heart failure and preserved left ventricular ejection fraction. Am J Cardiol 102:733–737

    Article  PubMed  CAS  Google Scholar 

  18. Anand IS, Fisher LD, Chiang YT, Latini R, Masson S, Maggioni AP, Glazer RD, Tognoni G et al (2003) Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 107:1278–1283

    Article  PubMed  CAS  Google Scholar 

  19. Troughton RW, Frampton CM, Yandle TG, Espiner EA, Nicholls MG, Richards AM (2000) Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 355:1126–1130

    Article  PubMed  CAS  Google Scholar 

  20. Jourdain P, Jondeau G, Funck F, Gueffet P, Le Helloco A, Donal E, Aupetit JF, Aumont MC et al (2007) Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol 49:1733–1739

    Article  PubMed  CAS  Google Scholar 

  21. Shah MR (2006) Abstract 2554: STARBRITE: A Randomized Pilot Trial of BNP-Guided Therapy in Patients with Advanced Heart Failure. Circulation 114: II_528

  22. Pfisterer M, Buser P, Rickli H, Gutmann M, Erne P, Rickenbacher P, Vuillomenet A, Jeker U et al (2009) BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified versus Standard Medical Therapy in Elderly Patients with Congestive Heart Failure (TIME-CHF) randomized trial. JAMA 301:383–392

    Article  PubMed  CAS  Google Scholar 

  23. Lainchbury JG, Troughton RW, Strangman KM, Frampton CM, Pilbrow A, Yandle TG, Hamid AK, Nicholls MG et al (2009) N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol 55:53–60

    Article  PubMed  Google Scholar 

  24. Eurlings LW, van Pol PE, Kok WE, van Wijk S, Lodewijks-van der Bolt C, Balk AH, Lok DJ, Crijns HJ et al (2010) Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) study. J Am Coll Cardiol 56:2090–2100

    Article  PubMed  CAS  Google Scholar 

  25. Gajarsa JJ, Kloner RA (2010) Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev

  26. Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure: from molecules to man (Part I). Cardiovasc Pathol 14:1–11

    Article  PubMed  Google Scholar 

  27. Umar S, Bax JJ, Klok M, van Bommel RJ, Hessel MH, den Adel B, Bleeker GB, Henneman MM et al (2008) Myocardial collagen metabolism in failing hearts before and during cardiac resynchronization therapy. Eur J Heart Fail 10:878–883

    Article  PubMed  CAS  Google Scholar 

  28. Laurent GJ (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252:C1–C9

    PubMed  CAS  Google Scholar 

  29. Sundstrom J, Evans JC, Benjamin EJ, Levy D, Larson MG, Sawyer DB, Siwik DA, Colucci WS et al (2004) Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation 109:2850–2856

    Article  PubMed  Google Scholar 

  30. George J, Patal S, Wexler D, Roth A, Sheps D, Keren G (2005) Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure. Am Heart J 150:484–487

    Article  PubMed  CAS  Google Scholar 

  31. Zannad F, Alla F, Dousset B, Perez A, Pitt B (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102:2700–2706

    PubMed  CAS  Google Scholar 

  32. Hayashi M, Tsutamoto T, Wada A, Tsutsui T, Ishii C, Ohno K, Fujii M, Taniguchi A et al (2003) Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction. Circulation 107:2559–2565

    Article  PubMed  CAS  Google Scholar 

  33. Pitt B, Williams G, Remme W, Martinez F, Lopez-Sendon J, Zannad F, Neaton J, Roniker B et al (2001) The EPHESUS trial: eplerenone in patients with heart failure due to systolic dysfunction complicating acute myocardial infarction. Eplerenone Post-AMI Heart Failure Efficacy and Survival Study. Cardiovasc Drugs Ther 15:79–87

    Article  PubMed  CAS  Google Scholar 

  34. Iraqi W, Rossignol P, Angioi M, Fay R, Nuee J, Ketelslegers JM, Vincent J, Pitt B et al (2009) Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS). Circulation 119:2471–2479

    Article  PubMed  CAS  Google Scholar 

  35. Weber KT (1997) Monitoring tissue repair and fibrosis from a distance. Circulation 96:2488–2492

    PubMed  CAS  Google Scholar 

  36. Querejeta R, Varo N, Lopez B, Larman M, Artinano E, Etayo JC, Martinez Ubago JL, Gutierrez-Stampa M et al (2000) Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 101:1729–1735

    PubMed  CAS  Google Scholar 

  37. Jensen LT, Horslev-Petersen K, Toft P, Bentsen KD, Grande P, Simonsen EE, Lorenzen I (1990) Serum aminoterminal type III procollagen peptide reflects repair after acute myocardial infarction. Circulation 81:52–57

    Article  PubMed  CAS  Google Scholar 

  38. Uusimaa P, Risteli J, Niemela M, Lumme J, Ikaheimo M, Jounela A, Peuhkurinen K (1997) Collagen scar formation after acute myocardial infarction: relationships to infarct size, left ventricular function, and coronary artery patency. Circulation 96:2565–2572

    PubMed  CAS  Google Scholar 

  39. Poulsen SH, Host NB, Jensen SE, Egstrup K (2000) Relationship between serum amino-terminal propeptide of type III procollagen and changes of left ventricular function after acute myocardial infarction. Circulation 101:1527–1532

    PubMed  CAS  Google Scholar 

  40. Host NB, Jensen LT, Bendixen PM, Jensen SE, Koldkjaer OG, Simonsen EE (1995) The aminoterminal propeptide of type III procollagen provides new information on prognosis after acute myocardial infarction. Am J Cardiol 76:869–873

    Article  PubMed  CAS  Google Scholar 

  41. Takino T, Nakamura M, Hiramori K (1999) Circulating levels of carboxyterminal propeptide of type I procollagen and left ventricular remodeling after myocardial infarction. Cardiology 91:81–86

    Article  PubMed  CAS  Google Scholar 

  42. Poulsen SH, Host NB, Egstrup K (2001) Long-term changes in collagen formation expressed by serum carboxyterminal propeptide of type-I procollagen and relation to left ventricular function after acute myocardial infarction. Cardiology 96:45–50

    Article  PubMed  CAS  Google Scholar 

  43. Radovan J, Vaclav P, Petr W, Jan C, Michal A, Richard P, Martina P (2006) Changes of collagen metabolism predict the left ventricular remodeling after myocardial infarction. Mol Cell Biochem 293:71–78

    Article  PubMed  CAS  Google Scholar 

  44. Magga J, Puhakka M, Hietakorpi S, Punnonen K, Uusimaa P, Risteli J, Vuolteenaho O, Ruskoaho H et al (2004) Atrial natriuretic peptide, B-type natriuretic peptide, and serum collagen markers after acute myocardial infarction. J Appl Physiol 96:1306–1311

    Article  PubMed  CAS  Google Scholar 

  45. Oestreicher EM, Martinez-Vasquez D, Stone JR, Jonasson L, Roubsanthisuk W, Mukasa K, Adler GK (2003) Aldosterone and not plasminogen activator inhibitor-1 is a critical mediator of early angiotensin II/NG-nitro-l-arginine methyl ester-induced myocardial injury. Circulation 108:2517–2523

    Article  PubMed  CAS  Google Scholar 

  46. Wehling M, Spes CH, Win N, Janson CP, Schmidt BM, Theisen K, Christ M (1998) Rapid cardiovascular action of aldosterone in man. J Clin Endocrinol Metab 83:3517–3522

    Article  PubMed  CAS  Google Scholar 

  47. Rocha R, Stier CT Jr, Kifor I, Ochoa-Maya MR, Rennke HG, Williams GH, Adler GK (2000) Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology 141:3871–3878

    Article  PubMed  CAS  Google Scholar 

  48. Sowers JR, Whaley-Connell A, Epstein M (2009) Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med 150:776–783

    PubMed  Google Scholar 

  49. Palmer BR, Pilbrow AP, Frampton CM, Yandle TG, Skelton L, Nicholls MG, Richards AM (2008) Plasma aldosterone levels during hospitalization are predictive of survival post-myocardial infarction. Eur Heart J 29:2489–2496

    Article  PubMed  CAS  Google Scholar 

  50. Beygui F, Collet JP, Benoliel JJ, Vignolles N, Dumaine R, Barthelemy O, Montalescot G (2006) High plasma aldosterone levels on admission are associated with death in patients presenting with acute ST-elevation myocardial infarction. Circulation 114:2604–2610

    Article  PubMed  CAS  Google Scholar 

  51. Ketelslegers JM, Zannad F, Gruson D, Cumps J, Vincent A (2008) Relationship between Survival and Basal and Early Changes in BNP, Nt-proBNP, and Big-ET-1 found in EPHESUS data. J Card Fail 14:119

    Article  Google Scholar 

  52. Rousseau MF, Gurne O, Duprez D, Van Mieghem W, Robert A, Ahn S, Galanti L, Ketelslegers JM (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. J Am Coll Cardiol 40:1596–1601

    Article  PubMed  CAS  Google Scholar 

  53. Rousseau MF, Konstam MA, Benedict CR, Donckier J, Galanti L, Melin J, Kinan D, Ahn S et al (1994) Progression of left ventricular dysfunction secondary to coronary artery disease, sustained neurohormonal activation and effects of ibopamine therapy during long-term therapy with angiotensin-converting enzyme inhibitor. Am J Cardiol 73:488–493

    Article  PubMed  CAS  Google Scholar 

  54. Schindler C, Brosnihan KB, Ferrario CM, Bramlage P, Maywald U, Koch R, Oertel R, Kirch W (2007) Comparison of inhibitory effects of irbesartan and atorvastatin treatment on the renin angiotensin system (RAS) in veins: a randomized double-blind crossover trial in healthy subjects. J Clin Pharmacol 47:112–120

    Article  PubMed  CAS  Google Scholar 

  55. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S et al (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348:1309–1321

    Article  PubMed  CAS  Google Scholar 

  56. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    Article  PubMed  CAS  Google Scholar 

  57. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21

    Article  PubMed  CAS  Google Scholar 

  58. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM et al (2009) 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119:1977–2016

    Article  PubMed  Google Scholar 

  59. Lainscak M, von Haehling S, Anker SD (2009) Natriuretic peptides and other biomarkers in chronic heart failure: from BNP, NT-proBNP, and MR-proANP to routine biochemical markers. Int J Cardiol 132:303–311

    Article  PubMed  Google Scholar 

  60. Smilde TD, Damman K, van der Harst P, Navis G, Westenbrink BD, Voors AA, Boomsma F, van Veldhuisen DJ et al (2009) Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin Res Cardiol 98:121–129

    Article  PubMed  CAS  Google Scholar 

  61. Lin HJ, Chao CL, Chien KL, Ho YL, Lee CM, Lin YH, Wu YW, Hsu RB et al (2009) Elevated blood urea nitrogen-to-creatinine ratio increased the risk of hospitalization and all-cause death in patients with chronic heart failure. Clin Res Cardiol 98:487–492

    Article  PubMed  CAS  Google Scholar 

  62. Damman K, van Veldhuisen DJ, Navis G, Voors AA, Hillege HL (2008) Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure. Eur J Heart Fail 10:997–1000

    Article  PubMed  CAS  Google Scholar 

  63. Damman K, Van Veldhuisen DJ, Navis G, Vaidya VS, Smilde TD, Westenbrink BD, Bonventre JV, Voors AA et al (2010) Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart 96:1297–1302

    Article  PubMed  CAS  Google Scholar 

  64. Abrahamson M, Olafsson I, Palsdottir A, Ulvsback M, Lundwall A, Jensson O, Grubb A (1990) Structure and expression of the human cystatin C gene. Biochem J 268:287–294

    PubMed  CAS  Google Scholar 

  65. Abrahamson M, Grubb A, Olafsson I, Lundwall A (1987) Molecular cloning and sequence analysis of cDNA coding for the precursor of the human cysteine proteinase inhibitor cystatin C. FEBS Lett 216:229–233

    Article  PubMed  CAS  Google Scholar 

  66. Ix JH, Shlipak MG, Chertow GM, Ali S, Schiller NB, Whooley MA (2006) Cystatin C, left ventricular hypertrophy, and diastolic dysfunction: data from the Heart and Soul Study. J Card Fail 12:601–607

    Article  PubMed  CAS  Google Scholar 

  67. Lassus J, Harjola VP, Sund R, Siirila-Waris K, Melin J, Peuhkurinen K, Pulkki K, Nieminen MS (2007) Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J 28:1841–1847

    Article  PubMed  CAS  Google Scholar 

  68. Naruse H, Ishii J, Kawai T, Hattori K, Ishikawa M, Okumura M, Kan S, Nakano T et al (2009) Cystatin C in acute heart failure without advanced renal impairment. Am J Med 122:566–573

    Article  PubMed  CAS  Google Scholar 

  69. Jackson CE, Solomon SD, Gerstein HC, Zetterstrand S, Olofsson B, Michelson EL, Granger CB, Swedberg K et al (2009) Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet 374:543–550

    Article  PubMed  CAS  Google Scholar 

  70. van de Wal RM, Asselbergs FW, Plokker HW, Smilde TD, Lok D, van Veldhuisen DJ, van Gilst WH, Voors AA (2005) High prevalence of microalbuminuria in chronic heart failure patients. J Card Fail 11:602–606

    Article  PubMed  Google Scholar 

  71. Bramlage P, Pittrow D, Lehnert H, Hofler M, Kirch W, Ritz E, Wittchen HU (2007) Frequency of albuminuria in primary care: a cross-sectional study. Eur J Cardiovasc Prev Rehabil 14:107–113

    Article  PubMed  Google Scholar 

  72. Schmieder RE, Schrader J, Zidek W, Tebbe U, Paar WD, Bramlage P, Pittrow D, Bohm M (2007) Low-grade albuminuria and cardiovascular risk: what is the evidence? Clin Res Cardiol 96:247–257

    Article  PubMed  CAS  Google Scholar 

  73. Masson S, Latini R, Milani V, Moretti L, Rossi MG, Carbonieri E, Frisinghelli A, Minneci C et al (2010) Prevalence and prognostic value of elevated urinary albumin excretion in patients with chronic heart failure: data from the GISSI-Heart Failure trial. Circ Heart Fail 3:65–72

    Article  PubMed  CAS  Google Scholar 

  74. Horwich TB, Patel J, MacLellan WR, Fonarow GC (2003) Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 108:833–838

    Article  PubMed  CAS  Google Scholar 

  75. Ishino M, Takeishi Y, Niizeki T, Watanabe T, Nitobe J, Miyamoto T, Miyashita T, Kitahara T et al (2008) Risk stratification of chronic heart failure patients by multiple biomarkers: implications of BNP, H-FABP, and PTX3. Circ J 72:1800–1805

    Article  PubMed  CAS  Google Scholar 

  76. Velagaleti RS, Gona P, Larson MG, Wang TJ, Levy D, Benjamin EJ, Selhub J, Jacques PF et al (2010) Multi-marker approach for the prediction of heart failure incidence in the community. Circulation 122:1700–1706

    Article  PubMed  Google Scholar 

  77. Sundstrom J, Ingelsson E, Berglund L, Zethelius B, Lind L, Venge P, Arnlov J (2009) Cardiac troponin-I and risk of heart failure: a community-based cohort study. Eur Heart J 30:773–781

    Article  PubMed  Google Scholar 

  78. Ingelsson E, Arnlov J, Sundstrom J, Zethelius B, Vessby B, Lind L (2005) Novel metabolic risk factors for heart failure. J Am Coll Cardiol 46:2054–2060

    Article  PubMed  CAS  Google Scholar 

  79. Ingelsson E, Riserus U, Berne C, Frystyk J, Flyvbjerg A, Axelsson T, Lundmark P, Zethelius B (2006) Adiponectin and risk of congestive heart failure. JAMA 295:1772–1774

    Article  PubMed  CAS  Google Scholar 

  80. Zethelius B, Berglund L, Sundstrom J, Ingelsson E, Basu S, Larsson A, Venge P, Arnlov J (2008) Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med 358:2107–2116

    Article  PubMed  CAS  Google Scholar 

  81. Morrow DA, de Lemos JA (2007) Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 115:949–952

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Michael Böhm, Adriaan Voors, Jean-Marie Ketelslegers, Peter Bramlage and Faiez Zannad have received lecture honoraria and research funding from a variety of pharmaceutical companies including Pfozer Inc. Peter Bramlage was a paid consultant to Pfizer in connection with the development of the manuscript. Eva Turgonyi is an employee of Pfizer Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Böhm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M., Voors, A.A., Ketelslegers, JM. et al. Biomarkers: optimizing treatment guidance in heart failure. Clin Res Cardiol 100, 973–981 (2011). https://doi.org/10.1007/s00392-011-0341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-011-0341-0

Keywords

Navigation