Skip to main content
Log in

Bildgebung beim Schlaganfall

Advanced imaging in stroke

  • Leitthema
  • Published:
Intensivmedizin und Notfallmedizin

Zusammenfassung

Das klinische Bild eines Schlaganfalles kann durch sehr unterschiedliche Erkrankungen verursacht sein. Grundlage einer spezifischen und effektiven Therapie stellt die sofortige Durchführung einer bildgebenden Diagnostik dar, um die Ursache zu klären. Die Computertomographie (CT) ist die am weitesten verfügbare Methode zur bildgebenden Diagnostik. Ihre entscheidende Bedeutung liegt in der schnellen und einfachen Durchführbarkeit sowie in der schnellen Darstellung einer intrakraniellen Blutung oder einer Ischämie. Die MRT mit Diffusions- und Perfusionsbildgebung ist ausreichend sensitiv in der Darstellung einer intrakraniellen Blutung und liefert schnell den Nachweis einer Ischämie, da die diffusionsgewichtete Bildgebung eine extrem sensitive Methode für früheste ischämische Veränderungen darstellt. Gerade die Diffusion ermöglicht auch die Darstellung kleiner Schlaganfälle, die mit der CT nicht oder nur ungenügend nachweisbar sind. Sowohl die CT als auch die MR-Angiographie lassen Gefäßstenosen oder Verschlüsse im zervikalen oder intrakraniellen Bereich sicher erkennen. Die Einführung der Perfusionsbildgebung hat in den letzten Jahren das Verständnis der Pathophysiologie der zerebralen Ischämie deutlich verbessert und neue diagnostische und therapeutische Möglichkeiten eröffnet. Somit könnte Perfusionsbildgebung, die sowohl mit der CT als auch mit der MRT möglich ist, in Zukunft wesentlich zur Indikationsstellung einer Lysetherapie beitragen.

Abstract

The clinical presentation of stroke can be caused by many different diseases. The basis of a specific and effective treatment of stroke is, therefore, immediate effective diagnostic imaging to clarify the exact cause. CT is the most widely available method for diagnostic imaging. Because it can be performed quickly and easily, the CT is of decisive importance in the identification of intracranial hemorrhage or ischemia. Thus, it allows within the first 3 h, the indication for the implementation of intravenous thrombolytic therapy. The MRI with diffusion and perfusion imaging is sufficiently sensitive in the depiction of intracranial hemorrhage and also provides rapid detection of ischemia, since diffusion-weighted imaging is an extremely sensitive method for early ischemic changes. Diffusion-weighted imaging is especially important in the detection of small strokes, for example, in the brainstem. These lesions are extremely difficult to detect by CT. Both CT and MR angiography make it possible to reliably detect vascular stenoses or occlusions in the cervical or intracranial area. The introduction of perfusion imaging in recent years has significantly improved the understanding of the pathophysiology of cerebral ischemia and new diagnostic and therapeutic possibilities. Especially perfusion imaging, which is possible with both with CT and MRI, may make a substantial contribution for the indication of thrombolytic therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. (n a) (2008) Guidelines for managerment of ischemic stroke and transient ischemic attack. Cerebrovasc Dis 25:457–507

  2. Thomalla G, Ringleb P, Köhrmann M, Schellinger PD (2009) Patient selection for thrombolysis using perfusion and diffusion MRI. An overview. Nervenarzt 80(2):119–120, 122–124

    Article  CAS  PubMed  Google Scholar 

  3. Parsons MW, Pepper EM, Bateman GA et al (2007) Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology 68:730–736

    Article  CAS  PubMed  Google Scholar 

  4. Köhrmann M, Jüttler E, Huttner HB et al (2007) Acute stroke imaging for thrombolytic therapy – an update. Cerebrovasc Dis 24(2–3):161–169

    Google Scholar 

  5. Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12(6):723–725

    CAS  PubMed  Google Scholar 

  6. Heiss WD (1983) Flow thresholds of functional and morphological damage of brain tissue. Stroke 14(3):329–331

    CAS  PubMed  Google Scholar 

  7. Baron JC, Kummer R von, del Zoppo GJ (1995) Treatment of acute ischemic stroke. Challenging the concept of a rigid and universal time window. Stroke 26(12):2219–2221

    CAS  PubMed  Google Scholar 

  8. Schlaug G, Benfield A, Baird AE et al (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53(7):1528–1537

    CAS  PubMed  Google Scholar 

  9. Kakuda W, Lansberg MG, Thijs VN et al (2008) DEFUSE Investigators. Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab 28(5):887–891

    Article  PubMed  Google Scholar 

  10. Wintermark M, Albers GW, Alexandrov AV et al (2008) Acute stroke imaging research roadmap. Stroke 39(5):1621–1628

    Article  PubMed  Google Scholar 

  11. Kidwell CS, Wintermark M (2008) Imaging of intracranial haemorrhage. Lancet Neurol 7(3):256–267

    Article  PubMed  Google Scholar 

  12. Fiebach JB, Schellinger PD, Gass A et al (2004) Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 35(2):502–506

    Article  PubMed  Google Scholar 

  13. Hacke W, Kaste M, Bluhmki E et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359(13):1317–1329

    Article  CAS  PubMed  Google Scholar 

  14. Kummer R von, Meyding-Lamadé U, Forsting M et al (1994) Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery trunk. AJNR Am J Neuroradiol 15(1):9–15

    Google Scholar 

  15. Larrue V, Kummer RR von, Müller A, Bluhmki E (2001) Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke 32(2):438–441

    CAS  PubMed  Google Scholar 

  16. Barber PA, Demchuk AM, Hill MD et al (2004) The probability of middle cerebral artery MRA flow signal abnormality with quantified CT ischaemic change: targets for future therapeutic studies. J Neurol Neurosurg Psychiatry 75(10):1426–1430

    Article  CAS  PubMed  Google Scholar 

  17. Wardlaw JM, Mielke O (2005) Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic treatment – systematic review. Radiology 235(2):444–453

    Article  PubMed  Google Scholar 

  18. Kummer R von (1998) Effect of training in reading CT scans on patient selection for ECASS II. Neurology 51:S50–S52

    Google Scholar 

  19. Barber PA, Demchuk AM, Zhang J, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS study group. Alberta stroke programme early CT score. Lancet 355(9216):1670–1674

    Article  CAS  PubMed  Google Scholar 

  20. Tomandl BF, Klotz E, Handschu R et al (2003) Comprehensive imaging of ischemic stroke with multisection CT. Radiographics 23(3):565–592

    Article  PubMed  Google Scholar 

  21. Schramm P, Schellinger PD, Fiebach JB et al (2002) Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 33(10):2426–2432

    Article  PubMed  Google Scholar 

  22. Koenig M, Klotz E, Luka B et al (1998) Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology 209(1):85–93

    CAS  PubMed  Google Scholar 

  23. Koenig M, Kraus M, Theek C et al (2001) Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke 32:431–437

    CAS  PubMed  Google Scholar 

  24. Muir KW, Buchan A, Kummer R von et al (2006) Imaging of acute stroke. Lancet Neurol 5(9):755–768

    Article  PubMed  Google Scholar 

  25. Röther J (2001) CT and MRI in the diagnosis of acute stroke and their role in thrombolysis. Thromb Res 103 (Suppl 1):S125–133

    Article  PubMed  Google Scholar 

  26. Fiebach JB, Schellinger PD, Jansen O et al (2002) CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 33(9):2206–2210

    Article  CAS  PubMed  Google Scholar 

  27. Østergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22(6):710–717

    Article  PubMed  Google Scholar 

  28. Struffert T, Köhrmann M, Engelhorn T et al (2009) Penumbra Stroke System as an „add-on“ for the treatment of large vessel occlusive disease following thrombolysis: first results. Eur Radiol 19(9):2286–2293

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Struffert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struffert, T., Saake, M., Ott, S. et al. Bildgebung beim Schlaganfall. Intensivmed 47, 161–168 (2010). https://doi.org/10.1007/s00390-009-0118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-009-0118-0

Schlüsselwörter

Keywords

Navigation