Skip to main content
Log in

Klinische, morphologische und molekularbiologische Charakteristika des alternden Auges

Clinical, morphological and molecular biological characteristics of the aging eye

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

A Leserbriefe to this article was published on 19 May 2017

Zusammenfassung

Grundlagen

Das alternde visuelle System geht mit einer Visusverschlechterung einher. Altersbedingte Veränderungen können in relevante ophthalmologische Erkrankungen übergehen. Ziel der Arbeit ist eine Darstellung von klinischen, morphologischen und molekularbiologischen Veränderungen des alternden Auges.

Material und Methoden

Es wurden eine webbasierte Recherche sowie Sichtung ophthalmologischer Fachliteratur zum alternden Auge insbesondere zu Hornhaut, Linse, Glaskörper, Retina, retinales Pigmentepithel, Choroidea und Sehnerv durchgeführt. Die Literaturrecherche wurde in Form des vorliegenden Beitrags zusammengefasst.

Ergebnisse

Altersbedingte Veränderungen lassen sich in den brechenden optischen Medien wie Hornhaut und Linse sowie in neuronalen Anteilen wie der Retina nachweisen. Neben Charakteristika ohne klinische Relevanz zeigen sich Veränderungen, die in pathologische Konditionen übergehen können. Diese Übergänge zu relevanten ophthalmologischen Erkrankungen wie Katarakt und altersabhängige Makuladegeneration sind fließend.

Diskussion

Das Verständnis der Rolle des physiologischen Alterungsprozesses ist bei der Entstehung von Krankheiten von großer Bedeutung. Eine Ableitung physiologischer Marker oder neuer Ansätze zur Erfassung oder Behandlung von krankheitsbedingten Entitäten mit dem Risikofaktor Alter ist wünschenswert. Hierzu sind zukünftige translationale Ansätze in der klinischen und grundlagenwissenschaftlichen ophthalmologischen Forschung notwendig.

Abstract

Background

The physiological aging of the eye is associated with loss of visual function. Age-related changes of the eye can result in ophthalmological diseases. The aim of this article is to display morphological, histological and molecular biological alterations of the aging eye.

Material and methods

A web-based search and review of the literature for aging of the visual system including cornea, lens, vitreous humor, retina, retinal pigment epithelium (RPE), choroidea and optic nerve were carried out. The most important results related to morphological, histological and molecular biological changes are summarized.

Results

Age-related, morphological alterations can be found in preretinal structures, e. g. cornea, lens and vitreous humor, as well as neuronal structures, such as the retina. In addition to negligible clinical signs of the aging eye, there are clinically relevant changes which can develop into pathological ophthalmological diseases. These transitions from age-related alterations to relevant ophthalmological diseases, e. g. age-related macular degeneration and glaucoma are continuous.

Conclusion

An understanding of aging could provide predictive factors to detect the conversion of physiological aging into pathological conditions. The derivation of physiological markers or new approaches to detection and treatment of disease-related entities associated with the risk factor aging are desirable. Translational approaches in clinical and basic science are necessary to provide new therapeutic options for relevant ophthalmological diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Asano K, Nomura H, Iwano M et al (2005) Relationship between astigmatism and aging in middle-aged and elderly Japanese. Jpn J Ophthalmol 49:127–133

    Article  PubMed  Google Scholar 

  2. Beebe DC, Holekamp NM, Siegfried C et al (2011) Vitreoretinal influences on lens function and cataract. Philos Trans R Soc Lond B Biol Sci 366:1293–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bohm MR, Mertsch S, Konig S et al (2013) Macula-less rat and macula-bearing monkey retinas exhibit common lifelong proteomic changes. Neurobiol Aging 34:2659–2675

    Article  PubMed  Google Scholar 

  5. Bourne WM (2003) Biology of the corneal endothelium in health and disease. Eye (Lond) 17:912–918

    Article  CAS  Google Scholar 

  6. Boya P, Esteban-Martinez L, Serrano-Puebla A et al (2016) Autophagy in the eye: development, degeneration, and aging. Prog Retin Eye Res. doi:10.1016/j.preteyeres.2016.08.001

    PubMed  Google Scholar 

  7. Bu SC, Kuijer R, Li XR et al (2014) Idiopathic epiretinal membrane. Retina 34:2317–2335

    Article  CAS  PubMed  Google Scholar 

  8. Cavallotti C, Schvoeller M (2008) Aging of the retinal pigmented epithelium. In: Cavallotti C, Cerulli L (Hrsg) Age-related changes of the human eye. Humana Press, Totowa, S 203–2016

    Chapter  Google Scholar 

  9. Cerulli AFR, Carella G (2008) The aging of the choroid. In: Cavallotti CLC (Hrsg) Age-related changes of the human eye. Humana Press, Totowa, S 217–238

    Chapter  Google Scholar 

  10. Cerulli L, Missiroli F (2008) Aging of the cornea. In: Cavallotti C, Cerulli L (Hrsg) Age-related changes of the human eye. Human Press, Totowa, S 45–60

    Chapter  Google Scholar 

  11. Chintalapudi SR, Djenderedjian L, Stiemke AB et al (2016) Isolation and molecular profiling of primary mouse retinal ganglion cells: comparison of phenotypes from healthy and glaucomatous retinas. Front Aging Neurosci 8:93

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chirco KR, Sohn EH, Stone EM et al (2016) Structural and molecular changes in the aging choroid: implications for age-related macular degeneration. Eye (Lond). doi:10.1038/eye.2016.216

    Google Scholar 

  13. Chylack LT Jr., Wolfe JK, Friend J et al (1993) Quantitating cataract and nuclear brunescence, the Harvard and LOCS systems. Optom Vis Sci 70:886–895

    Article  PubMed  Google Scholar 

  14. Cogan DG, Kuwabara T (1959) Arcus senilis; its pathology and histochemistry. AMA Arch Ophthalmol 61:553–560

    Article  CAS  PubMed  Google Scholar 

  15. Crabb JW (2014) The proteomics of drusen. Cold Spring Harb Perspect Med 4:a017194

    Article  PubMed  PubMed Central  Google Scholar 

  16. Davis BM, Crawley L, Pahlitzsch M et al (2016) Glaucoma: the retina and beyond. Acta Neuropathol. doi:10.1007/s00401-016-1609-2

    Google Scholar 

  17. Giarelli L, Falconieri G, Cameron JD et al (2003) Schnabel cavernous degeneration: a vascular change of the aging eye. Arch Pathol Lab Med 127:1314–1319

    PubMed  Google Scholar 

  18. Grewal DS, Grewal SP (2012) Clinical applications of Scheimpflug imaging in cataract surgery. Saudi J Ophthalmol 26:25–32

    Article  PubMed  Google Scholar 

  19. Grossniklaus HE, Nickerson JM, Edelhauser HF et al (2013) Anatomic alterations in aging and age-related diseases of the eye. Invest Ophthalmol Vis Sci 54:ORSF23–ORSF27

    Article  PubMed  PubMed Central  Google Scholar 

  20. Haimovici R, Gantz DL, Rumelt S et al (2001) The lipid composition of drusen, Bruch’s membrane, and sclera by hot stage polarizing light microscopy. Invest Ophthalmol Vis Sci 42:1592–1599

    CAS  PubMed  Google Scholar 

  21. Heys KR, Cram SL, Truscott RJ (2004) Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol Vis 10:956–963

    PubMed  Google Scholar 

  22. Holbach L, Hinzpeter E, Naumann G (1980) Kornea und Sklera. In: Doerr W, Seifert G (Hrsg) Pathologie des Auges. Springer, Berlin, S 507–692

    Google Scholar 

  23. Johnson DH, Bourne WM, Campbell RJ (1982) The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch Ophthalmol 100:1942–1947

    Article  CAS  PubMed  Google Scholar 

  24. Johnson MW (2009) Etiology and treatment of macular edema. Am J Ophthalmol 147:11–21e11

    Article  PubMed  Google Scholar 

  25. Jorge L, Anania A, Sagnelli P (2008) The aging of the human lens. In: Cavallotti C, Cerulli L (Hrsg) Age-related changes of the human eye. Humana Press, Totowa, S 61–132

    Google Scholar 

  26. Joyce NC (2005) Cell cycle status in human corneal endothelium. Exp Eye Res 81:629–638

    Article  CAS  PubMed  Google Scholar 

  27. Kam JH, Jeffery G (2015) To unite or divide: mitochondrial dynamics in the murine outer retina that preceded age related photoreceptor loss. Oncotarget 6:26690–26701

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kinnunen K, Petrovski G, Moe MC et al (2012) Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol 90:299–309

    Article  CAS  PubMed  Google Scholar 

  29. Küchle H, Busse H, Küchle M (1998) Taschenbuch der Augenheilkunde. Huber, Bern

    Google Scholar 

  30. Ma W, Wong WT (2016) Aging changes in retinal microglia and their relevance to age-related retinal disease. Adv Exp Med Biol 854:73–78

    Article  PubMed  PubMed Central  Google Scholar 

  31. Margo C (2008) Age-related diseases of the vitreous. In: Cavallotti C, Cerulli L (Hrsg) Age-related changes of the human eye. Humana Press, Totowa, S 157–192

    Chapter  Google Scholar 

  32. Massey SC (2005) Functional Anatomy of the Mammalian Retina. In Volume 1: Basic Science, Inherited Retinal Disease, and Tumors: 43–82. https://uthealth.influuent.utsystem.edu/en/publications/functional-anatomy-of-the-mammalian-retina

  33. Mcleod D, Hiscott PS, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye (Lond) 1(Pt 2):263–281

    Article  Google Scholar 

  34. Nzekwe EU, Maurice DM (1994) The effect of age on the penetration of fluorescein into the human eye. J Ocul Pharmacol 10:521–523

    Article  CAS  PubMed  Google Scholar 

  35. Patel NB, Lim M, Gajjar A et al (2014) Age-associated changes in the retinal nerve fiber layer and optic nerve head. Invest Ophthalmol Vis Sci 55:5134–5143

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pescosolido N, Karavitis P (2008) Age-related changes and/or diseases in the human retina. In: Cavallotti C, Cerullo L (Hrsg) Changes of the human eye. Humana Press, Totowa, S 358–371

    Google Scholar 

  37. Petrash JM (2013) Aging and age-related diseases of the ocular lens and vitreous body. Invest Ophthalmol Vis Sci 54:ORSF54–ORSF59

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ramrattan RS, Van Der Schaft TL, Mooy CM et al (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864

    CAS  PubMed  Google Scholar 

  39. Rao NSW (1996) Optic nerve. In: Ophthalmic Pathology (Hrsg) An atlas and textbook. W. B. Saunders, Philadelphia, S 513–622

    Google Scholar 

  40. Rose K, Schroer U, Volk GF et al (2008) Axonal regeneration in the organotypically cultured monkey retina: biological aspects, dependence on substrates and age-related proteomic profiling. Restor Neurol Neurosci 26:249–266

    CAS  PubMed  Google Scholar 

  41. Siemerink MJ, Augustin AJ, Schlingemann RO (2010) Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol 46:4–20

    Article  CAS  PubMed  Google Scholar 

  42. Sivak JM (2013) The aging eye: common degenerative mechanisms between the Alzheimer’s brain and retinal disease. Invest Ophthalmol Vis Sci 54:871–880

    Article  PubMed  Google Scholar 

  43. Song E, Sun H, Xu Y et al (2014) Age-related cataract, cataract surgery and subsequent mortality: a systematic review and meta-analysis. PLOS ONE 9:e112054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spitzer MS, Januschowski K (2015) Aging and age-related changes of the vitreous body. Ophthalmologe 112(552):554–558

    Google Scholar 

  45. Steel DH, Lotery AJ (2013) Idiopathic vitreomacular traction and macular hole: a comprehensive review of pathophysiology, diagnosis, and treatment. Eye (Lond) 27(Suppl 1):1–21

    Article  Google Scholar 

  46. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  47. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368

    Article  PubMed  Google Scholar 

  48. Yam JC, Kwok AK (2014) Ultraviolet light and ocular diseases. Int Ophthalmol 34:383–400

    Article  PubMed  Google Scholar 

  49. Yanoff MD, Jay S (2013) Ophthalmology. Elsevier, Oxford

    Google Scholar 

Download references

Danksagung

Die Autoren danken Herrn Professor Dr. Dr. Solon Thanos für das Lesen des Manuskriptes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. R. Böhm.

Ethics declarations

Interessenkonflikt

M.R.R. Böhm, H. Thomasen, F. Parnitzke und K.-P. Steuhl geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhm, M.R.R., Thomasen, H., Parnitzke, F. et al. Klinische, morphologische und molekularbiologische Charakteristika des alternden Auges. Ophthalmologe 114, 98–107 (2017). https://doi.org/10.1007/s00347-016-0403-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-016-0403-9

Schlüsselwörter

Keywords

Navigation