Skip to main content

Advertisement

Log in

Evaluation of the relationship between inducible nitric oxide synthase (iNOS) activity and effects of melatonin in experimental osteoporosis in the rat

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Inducible nitric oxide synthase (iNOS) plays a critical role in the pathogenesis of osteoporosis. iNOS generates nitric oxide (NO), a free radical contributing to the imbalance between bone formation and resorption caused by estrogen depletion. Melatonin is the major product of the pineal gland which is known to diminish iNOS expression and NO production significantly. The aim of this study was to determine the distribution of iNOS and the amount of apoptotic cells after melatonin treatment in ovariectomized rats. Since previous studies have shown that constitution of bone formation is primarily sustained in nucleus pulposus and epiphyseal cartilage, experiments were carried out on nucleus pulposus and epiphyseal cartilage; additional quantitation of osteoblasts and osteoclasts were evaluated on vertebral area as well. Vertebral sections of ovariectomized rats were obtained from formalin-fixed and parafin-embedded blocks. iNOS expression and quantitation of apoptotic cells in nucleus pulposus and epiphyseal cartilage were evaluated using indirect immunoperoxidase and TUNEL techniques, respectively. The number of osteoclasts and osteoblasts in trabecular bone was determined using histomorphometry. Ovariectomy increased iNOS expression and the number of apoptotic cells in nucleus pulposus and epiphyseal cartilage, whereas a 4-week treatment with melatonin (10 mg/kg/day) resulted in the reduction of both effects. These data indicate that there is strong influence of melatonin application on expression of iNOS, apoptosis, osteoclast and osteoblast numbers after ovariectomy. In conclusion, melatonin besides its usual use as an antiaging hormone, may also be an effective hormone in treatment of bone changes in estrogen deficiency states

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ben Hur H, Mor G, Blickstein I, Likhman I, Kohen F, Dgani R et al (1993) Localisation of estrogen receptors in long bones and vertebrae of human fetuses. Calcif Tissue Int 53:91–96

    Article  PubMed  CAS  Google Scholar 

  2. Conti A, Maestroni GJ (1995) The clinical neuroimmunotherapeutic role of melatonin in oncology. J Pineal Res 19:103–110

    Article  PubMed  CAS  Google Scholar 

  3. Crespo E, Macias M, Pozo D, Escames G, Martin M, Vives F et al (1999) Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 13:1537–1546

    PubMed  CAS  Google Scholar 

  4. Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di Paola R, Ruggeri Z et al (2003) Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 144:1098–1107

    Article  PubMed  CAS  Google Scholar 

  5. Gilad E, Wong HR, Zingarelli B, Virag L, O’Connor M, Salzman AL et al (1998) Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFkappaB activation. FASEB J 12:685–693

    PubMed  CAS  Google Scholar 

  6. Grabowski PS, Wright PK, Van’t Hof RJ, Helfrich MH, Ohshima H, Ralston SH (1997) Immunolocalization of inducible nitric oxide synthase in synovium and cartilage in rheumatoid arthritis and osteoarthritis. Br J Rheumatol 36:651–655

    Article  PubMed  CAS  Google Scholar 

  7. Harada A, Okuizumi H, Miyagi N, Genda E (1998) Correlation between bone mineral density and intervertebral disc degeneration. Spine 23:857–861

    Article  PubMed  CAS  Google Scholar 

  8. Hukkanen M, Hughes FJ, Buttery LD, Gross SS, Evans TJ, Seddon S et al (1995) Cytokine-stimulated expression of inducible nitric oxide synthase by mouse, rat, and human osteoblast-like cells and its functional role in osteoblast metabolic activity. Endocrinology 136:5445–5453

    Article  PubMed  CAS  Google Scholar 

  9. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191

    Article  PubMed  CAS  Google Scholar 

  10. Kaptanoglu E, Palaoglu S, Demirpence E, Akbiyik F, Solaroglu I, Kilinc A (2003) Different responsiveness of central nervous system tissues to oxidative conditions and to the antioxidant effect of melatonin. J Pineal Res 34:32–35

    Article  PubMed  CAS  Google Scholar 

  11. Kohyama K, Saura R, Doita M, Mizuno K (2000) Intervertebral disc cell apoptosis by nitric oxide: biological understanding of intervertebral disc degeneration. Kobe J Med Sci 46:283–295

    PubMed  CAS  Google Scholar 

  12. Margulies JY, Payzer A, Nyska M, Neuwirth MG, Floman Y, Robin GC (1996) The relationship between degenerative changes and osteoporosis in the lumbar spine. Clin Orthop Relat Res 324:145–152

    Article  PubMed  Google Scholar 

  13. Mekraldi S, Lafage-Proust MH, Bloomfield S, Alexandre C, Vico L (2003) Changes in vasoactive factors associated with altered vessel morphology in the tibial metaphysis during ovariectomy-induced bone loss in rats. Bone 32:630–641

    Article  PubMed  CAS  Google Scholar 

  14. Miyakoshi N, Itoi E, Murai H, Wakabayashi I, Ito H, Minato T (2003) Inverse relation between osteoporosis and spondylosis in postmenopausal women as evaluated by bone mineral density and semiquantitative scoring of spinal degeneration. Spine 28:492–495

    Article  PubMed  Google Scholar 

  15. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    PubMed  CAS  Google Scholar 

  16. Nilsson LO, Boman A, Savendahl L, Grigelioniene G, Ohlsson C, Ritzen EM, Wroblewski J (1999) Demonstration of estrogen receptor-beta immunoreactivity in human growth plate cartilage. J Clin Endocrinol Metab 84:370–373

    Article  PubMed  CAS  Google Scholar 

  17. Parfitt AM, Drezner MK, Glorieux FH, Kanıs JA, Malluche H, Meunıer PJ et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    PubMed  CAS  Google Scholar 

  18. Ploumis A, Manthou ME, Emmanouil-Nikolousi EN, Sofia A, Christodoulou A (2004) Animal model of chondrocyte apoptosis in the epiphyseal cartilage of the neonatal bone. J Orthop Sci 9:495–502

    Article  PubMed  Google Scholar 

  19. Ralston SH, Grabowski PS (1996) Mechanisms of cytokine induced bone resorption: role of nitric oxide, cyclic guanosine monophosphate, and prostaglandins. Bone 19:29–33

    Article  PubMed  CAS  Google Scholar 

  20. Ralston SH, Todd D, Helfrich M, Benjamin N, Grabowski PS (1994) Human osteoblast-like cells produce nitric oxide and express inducible nitric oxide synthase. Endocrinology 135:330–336

    Article  PubMed  CAS  Google Scholar 

  21. Reiter RJ (2000) Melatonin: lowering the high price of free radicals. News Physiol Sci 15:246–250

    PubMed  CAS  Google Scholar 

  22. Riancho JA, Zarrabeitia MT, Fernandez Luna JL, Gonzalez Macias J (1995) Mechanisms controlling nitric oxide synthesis in osteoblasts. Mol Cell Endocrinol 107:87–92

    Article  PubMed  CAS  Google Scholar 

  23. Riancho JA, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernandez-Luna JL et al (1995) Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res 10:439–446

    Article  PubMed  CAS  Google Scholar 

  24. Salvatore C, Emanuela M, Laura D, Tızıana G, Rosanna DP, Zaira R et al (2003) Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 144:1098–1107

    Article  CAS  Google Scholar 

  25. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  26. Srinivasan V (2002) Melatonin oxidative stress and neurodegenerative diseases. Indian J Exp Biol 40:668–679

    PubMed  CAS  Google Scholar 

  27. Verstraeten A, Van Ermen H, Haghebaert G, Nijs J, Geusens P, Dequeker J (1991) Osteoarthrosis retards the development of osteoporosis: observation of the coexistence of Osteoarthrosis and osteoporosis. Clin Orthop Relat Res 264:169–177

    PubMed  Google Scholar 

  28. Wang T, Zhang L, Huang C, Cheng AG, Dang GT (2004) Relationship between osteopenia and lumbar intervertebral disc degeneration in ovariectomized rats. Calcif Tissue Int 75:205–213

    Article  PubMed  CAS  Google Scholar 

  29. Yasuma T, Suzuki F, Koh S, Yamauchi Y (1988) Pathological changes in the cartilaginous plates in relation to intervertebral disc lesions. Acta Pathol Jpn 38:735–750

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Prof. Sibel Göksel for his excellent critical reviewing and Associate Prof. Aytul Onal for his excellent statistical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Oktem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oktem, G., Uslu, S., Vatansever, S. et al. Evaluation of the relationship between inducible nitric oxide synthase (iNOS) activity and effects of melatonin in experimental osteoporosis in the rat. Surg Radiol Anat 28, 157–162 (2006). https://doi.org/10.1007/s00276-005-0065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-005-0065-9

Keywords

Navigation