Skip to main content

Advertisement

Log in

Vitamin K2 Improves Renal Function and Increases Femoral Bone Strength in Rats with Renal Insufficiency

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Renal insufficiency induces cortical bone loss in rats. The present study examined the influence of vitamin K2 on renal function, cortical bone mass, and bone strength in rats with renal insufficiency. Thirty male Sprague-Dawley rats (8 weeks old) were randomized by the stratified weight method to the following three groups of 10 animals each: sham operation (control), 5/6 nephrectomy, and 5/6 nephrectomy + oral vitamin K2 (menaquinone-4, menatetrenone, 30 mg/kg, 5 days/week). Treatment was initiated 10 days after surgery. After 6 weeks of treatment, samples of serum, urine, and bone (femur and tibia) were obtained. Renal function was evaluated, bone histomorphometric analysis was performed on the tibial diaphysis, and the bone mineral density (BMD) and mechanical strength of the femoral diaphysis were determined by peripheral quantitative computed tomography and a three-point bending test, respectively. Nephrectomy induced renal dysfunction, as indicated by increased levels of serum creatinine and urea nitrogen along with a decrease of creatinine clearance; and it also decreased BMD without significantly affecting bone strength at the femoral diaphysis. Vitamin K2 improved renal function parameters but did not significantly influence BMD at the femoral diaphysis. However, vitamin K2 decreased the bone marrow area of the tibial diaphysis and increased the stiffness of the femoral diaphysis. These findings suggest that administration of vitamin K2 improves renal function and increases cortical bone strength without altering BMD in rats with renal insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fried LF, Biggs ML, Shlipak MG, Seliger S, Kestenbaum B, Stehman-Breen C, Sarnak M, Siscovick D, Harris T, Cauley J, Newman AB, Robbins J (2007) Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol 18:282–286

    Article  PubMed  Google Scholar 

  2. Nickolas TL, McMahon DJ, Shane E (2006) Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 17:3223–3232

    Article  PubMed  Google Scholar 

  3. Nickolas TL, Leonard MB, Shane E (2008) Chronic kidney disease and bone fracture: a growing concern. Kidney Int 74:721–731

    Article  PubMed  Google Scholar 

  4. West SL, Lok CE, Jamal SA (2010) Fracture Risk Assessment in Chronic Kidney Disease, Prospective Testing Under Real World Environments (FRACTURE): a prospective study. BMC Nephrol 11:17

    Article  PubMed  Google Scholar 

  5. Kinsella S, Chavrimootoo S, Molloy MG, Eustace JA (2010) Moderate chronic kidney disease in women is associated with fracture occurrence independently of osteoporosis. Nephron Clin Pract 116:c256–c262

    Article  PubMed  Google Scholar 

  6. Pitts TO, Piraino BH, Mitro R, Chen TC, Segre GV, Greenberg A, Puschett JB (1988) Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab 67:876–881

    Article  PubMed  CAS  Google Scholar 

  7. Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21:543–548

    Article  PubMed  Google Scholar 

  8. Jamal SA, Leiter RE, Jassal V, Hamilton CJ, Bauer DC (2006) Impaired muscle strength is associated with fractures in hemodialysis patients. Osteoporos Int 17:1390–1397

    Article  PubMed  CAS  Google Scholar 

  9. Malluche HH, Faugere MC (1989) Renal osteodystrophy. N Engl J Med 321:317–379

    Article  PubMed  CAS  Google Scholar 

  10. Lindberg JS, Moe SM (1999) Osteoporosis in end-state renal disease. Semin Nephrol 19:115–122

    PubMed  CAS  Google Scholar 

  11. Miller PD (2007) Is there a role for bisphosphonates in chronic kidney disease? Semin Dial 20:186–190

    Article  PubMed  Google Scholar 

  12. Iwamoto J, Matsumoto H, Takeda T (2009) Efficacy of menatetrenone (vitamin K2) against non-vertebral and hip fractures in patients with neurological diseases: meta-analysis of three randomized, controlled trials. Clin Drug Investig 29:471–479

    Article  PubMed  CAS  Google Scholar 

  13. Cockyne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ (2006) Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 166:1256–1261

    Article  Google Scholar 

  14. Hauschka PV, Lian JB, Cole DEC, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047

    PubMed  CAS  Google Scholar 

  15. Shearer MJ (1995) Vitamin K. Lancet 345:229–234

    Article  PubMed  CAS  Google Scholar 

  16. Vermeer C, Jie KSG, Knapen MHJ (1995) Role of vitamin K in bone metabolism. Annu Rev Nutr 15:1–22

    Article  PubMed  CAS  Google Scholar 

  17. Tabb MM, Sun A, Zhou C, Grün F, Errandi J, Romero K, Pham H, Inoue S, Mallick S, Lin M, Forman BM, Blumberg B (2003) Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 278:43919–43927

    Article  PubMed  CAS  Google Scholar 

  18. Holden RM, Morton AR, Garland JS, Pavlov A, Day AG, Booth SL (2010) Vitamins K and D status in stages 3–5 chronic kidney disease. Clin J Am Soc Nephrol 5:590–597

    Article  PubMed  CAS  Google Scholar 

  19. Luukinen H, Käkönen SM, Pettersson K, Koski K, Laippala P, Lövgren T, Kivelä SL, Väänänen HK (2000) Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 15:2473–2478

    Article  PubMed  CAS  Google Scholar 

  20. Vergnaud P, Garnero P, Meunier PJ, Bréart G, Kamihagi K, Delmas PD (1997) Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab 82:719–724

    Article  PubMed  CAS  Google Scholar 

  21. Szulc P, Chapuy MC, Meunier PJ, Delmas PD (1996) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a three year follow-up study. Bone 18:487–488

    Article  PubMed  CAS  Google Scholar 

  22. Szulc P, Chapuy MC, Meunier PJ, Delmas PD (1993) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 91:1769–1774

    Article  PubMed  CAS  Google Scholar 

  23. Jokihaara J, Järvinen TL, Jolma P, Kööbi P, Kalliovalkama J, Tuukkanen J, Saha H, Sievänen H, Kannus P, Pörsti I (2006) Renal insufficiency-induced bone loss is associated with an increase in bone size and preservation of strength in rat proximal femur. Bone 39:353–360

    Article  PubMed  Google Scholar 

  24. Miller MA, Chin J, Miller SC, Fox J (1998) Disparate effects of mild, moderate, and severe secondary hyperparathyroidism on cancellous and cortical bone in rats with chronic renal insufficiency. Bone 23:257–266

    Article  PubMed  CAS  Google Scholar 

  25. Berger I, Piecha G, Rabkin R, Kaya N, Geldyyev A, Sun D, Chen Y, Koleganova N, Gross ML (2007) Growth hormone treatment prevents osteoporosis in uremic rats. Histol Histopathol 22:1231–1239

    PubMed  CAS  Google Scholar 

  26. Iwasaki-Ishizuka Y, Yamato H, Nii-Kono T, Kurokawa K, Fukagawa M (2005) Downregulation of parathyroid hormone receptor gene expression and osteoblastic dysfunction associated with skeletal resistance to parathyroid hormone in a rat model of renal failure with low turnover bone. Nephrol Dial Transplant 20:1904–1911

    Article  PubMed  CAS  Google Scholar 

  27. Iwasaki Y, Kazama JJ, Yamato H, Fukagawa M (2011) Changes in chemical composition of cortical bone associated with bone fragility in rat model with chronic kidney disease. Bone 48:1260–1267

    Article  PubMed  CAS  Google Scholar 

  28. Iwamoto J, Seki A, Sato Y, Matsumoto H, Tadeda T, Yeh JK (2010) Vitamin K2 promotes bone healing in a rat femoral osteotomy model with or without glucocorticoid treatment. Calcif Tissue Int 86:234–241

    Article  PubMed  CAS  Google Scholar 

  29. Iwamoto J, Yeh JK, Schmidt A, Rowley E, Stanfield L, Takeda T, Sato M (2005) Raloxifene and vitamin K2 combine to improve the femoral neck strength of ovariectomized rats. Calcif Tissue Int 77:119–126

    Article  PubMed  CAS  Google Scholar 

  30. Villanueva AR (1974) A bone stain for osteoid seams in fresh, unembedded, mineralized bone. Stain Technol 49:1–8

    PubMed  CAS  Google Scholar 

  31. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  32. Chen MM, Yeh JK, Aloia JF, Tierney JM, Sprintz S (1994) Effect of treadmill exercise on tibial cortical bone in aged female rats: a histomorphometry and dual energy X-ray absorptiometry study. Bone 15:313–319

    Article  PubMed  CAS  Google Scholar 

  33. Iwamoto J, Matsumoto H, Takeda T, Sato Y, Liu X, Yeh JK (2008) Effects of vitamin K2 and risedronate on bone formation and resorption, osteocyte lacunar system, and porosity in the cortical bone of glucocorticoid-treated rats. Calcif Tissue Int 83:121–128

    Article  PubMed  CAS  Google Scholar 

  34. Iwamoto J, Matsumoto H, Takeda T, Sato Y, Yeh JK (2010) Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Calcif Tissue Int 87:254–262

    Article  PubMed  CAS  Google Scholar 

  35. Tamura K, Suzuki Y, Matsushita M, Fujii H, Miyaura C, Aizawa S, Kogo H (2007) Prevention of aortic calcification by etidronate in the renal failure rat model. Eur J Pharmacol 558:159–166

    Article  PubMed  CAS  Google Scholar 

  36. Mandalunis P, Ubios A (2005) Experimental renal failure and iron overload: a histomorphometric study in rat tibia. Toxicol Pathol 33:398–403

    Article  PubMed  CAS  Google Scholar 

  37. Schrooten I, Behets GJ, Cabrera WE, Vercauteren SR, Lamberts LV, Verberckmoes SC, Bervoets AJ, Dams G, Goodman WG, De Broe ME, D’Haese PC (2003) Dose-dependent effects of strontium on bone of chronic renal failure rats. Kidney Int 63:927–935

    Article  PubMed  CAS  Google Scholar 

  38. Nazarian A, Cory E, Müller R, Snyder BD (2009) Shortcomings of DXA to assess changes in bone tissue density and microstructure induced by metabolic bone diseases in rat models. Osteoporos Int 20:123–132

    Article  PubMed  CAS  Google Scholar 

  39. Hopper TA, Wehrli FW, Saha PK, Andre JB, Wright AC, Sanchez CP, Leonard MB (2007) Quantitative microcomputed tomography assessment of intratrabecular, intertrabecular, and cortical bone architecture in a rat model of severe renal osteodystrophy. J Comput Assist Tomogr 31:320–328

    Article  PubMed  Google Scholar 

  40. Fusaro M, Crepaldi G, Maggi S, Galli F, D’Angelo A, Calò L, Giannini S, Miozzo D, Gallieni M (2011) Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: an important but poorly studied relationship. J Endocrinol Invest 34:317–323

    PubMed  CAS  Google Scholar 

  41. Schurgers LJ, Barreto DV, Barreto FC, Liabeuf S, Renard C, Magdeleyns EJ, Vermeer C, Choukroun G, Massy ZA (2010) The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol 5:568–575

    Article  PubMed  CAS  Google Scholar 

  42. Worcester EM, Sebastian JL, Hiatt JG, Beshensky AM, Sadowski JA (1993) The effect of warfarin on urine calcium oxalate crystal growth inhibition and urinary excretion of calcium and nephrocalcin. Calcif Tissue Int 53:242–248

    Article  PubMed  CAS  Google Scholar 

  43. Nakagawa Y (1997) Properties and function of nephrocalcin: mechanism of kidney stone inhibition or promotion. Keio J Med 46:1–9

    Article  PubMed  CAS  Google Scholar 

  44. Ochiai M, Nakashima A, Takasugi N, Kiribayashi K, Kawai T, Usui K, Shigemoto K, Hamaguchi N, Kohno N, Yorioka N (2011) Vitamin K2 alters bone metabolism markers in hemodialysis patients with a low serum parathyroid hormone level. Nephron Clin Pract 117:c15–c19

    Article  PubMed  CAS  Google Scholar 

  45. Ferretti JL, Capozza RF, Zanchetta JR (1996) Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 18:97–102

    Article  PubMed  CAS  Google Scholar 

  46. Iwamoto J, Sato Y, Takeda T, Matsumoto H (2011) Bone quality and vitamin K2 in type 2 diabetes: review of preclinical and clinical studies. Nutr Rev 69:162–167

    Article  PubMed  Google Scholar 

  47. Shiraishi A, Higashi S, Masaki T, Saito M, Ito M, Ikeda S, Nakamura T (2002) A comparison of alfacalcidol and menatetrenone for the treatment of bone loss in an ovariectomized rat model of osteoporosis. Calcif Tissue Int 71:69–79

    Article  PubMed  CAS  Google Scholar 

  48. Kobayashi M, Hara K, Akiyama Y (2004) Effects of vitamin K2 (menatetrenone) and alendronate on bone mineral density and bone strength in rats fed a low-magnesium diet. Bone 35:1136–1143

    Article  PubMed  CAS  Google Scholar 

  49. Saito M, Fujii K, Soshi S (2005) Effects of vitamin B6 and vitamin K2 on bone mechanical properties and collagen cross-links in spontaneously diabetic WBN/Kob rats. J Bone Miner Res 20(suppl 1):S286

    Google Scholar 

  50. Saito M (2009) Vitamin K2 and bone quality [in Japanese]. J Osteoporotic Med 8:205–211

    Google Scholar 

  51. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196

    Article  PubMed  CAS  Google Scholar 

  52. Tanaka S, Narusawa K, Onishi H, Miura M, Hijioka A, Kanazawa Y, Nishida S, Ikeda S, Nakamura T (2011) Lower osteocalcin and osteopontin contents of the femoral head in hip fracture patients than osteoarthritis patients. Osteoporos Int 22:587–597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Kiichi Nonaka and Kaori Shindo (ELK Corporation, Tokyo, Japan) for pQCT analysis, Dr. Toshimi Masaki (Mitani Institute for Bone Histomorphometry, Tokyo, Japan) for bone histomorphometric analysis, and Dr. Tsuyoshi Ishii (Maruto Instrument, Tokyo, Japan) for biomechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Iwamoto.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamoto, J., Seki, A., Sato, Y. et al. Vitamin K2 Improves Renal Function and Increases Femoral Bone Strength in Rats with Renal Insufficiency. Calcif Tissue Int 90, 50–59 (2012). https://doi.org/10.1007/s00223-011-9548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9548-3

Keywords

Navigation