Skip to main content
Log in

Sagittal balance of the spine in patients with osteoporotic vertebral fractures

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study aims to compare the sagittal global spinal balance of patients consulting for osteoporosis, aged above 50 years with and without osteoporotic vertebral fractures (VFs). Global spinal balance is abnormal even in subjects without VFs. VFs and age are determinants of sagittal global balance; however, pelvic parameters play a role in compensatory mechanisms.

Introduction

This study aims to compare the spine curvatures, pelvic parameters, and the sagittal global spinal balance of patients aged above 50 years with and without osteoporotic vertebral fractures.

Methods

Two hundred patients (95 % women) aged 68.3 ± 9.5 years underwent full skeleton radiographs in the standing position, by EOS®, a low dose biplane X-ray imaging system. VFs were evaluated according to Genant’s classification. Spinal (thoracic and lumbar Cobb’s indices, thoracic and lumbar tilts) and pelvic (pelvic tilt, sacral slope, and pelvic incidence) parameters were measured. Sagittal spinal balance was measured using the C7 plumb line and the spinosacral angle (SSA). We compared these parameters in patients with and without vertebral fracture and assessed the determinants of abnormal sagittal spinal balance.

Results

Sixty-nine patients had at least one VF. The sagittal spinal balance was significantly altered in patients with at least one VF, and there was an effect of the number and severity of VFs on parameters. Discriminative value for identification of patients with at least one VF, assessed by Area Under the Curves (AUCs) was 0.652 and 0.706 for C7 plumbline and SSA, respectively. Using multivariate analysis, parameters significantly associated with abnormal spinal balance (SSA) were the presence of at least one VF (OR = 4.96, P < 0.0001), age (OR = 1.07, P = 0.0006), and high pelvic incidence as a protective factor (OR = 0.93, P < 0.0001).

Conclusions

Global spinal balance is abnormal in subjects consulting for osteoporosis, even in subjects without VFs. VFs and age are determinants of abnormal sagittal global balance; however, pelvic parameters play a role in compensatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ettinger B, Black DM, Nevitt MC, Rundle AC, Cauley JA, Cummings SR, Genant HK (1992) Contribution of vertebral deformities to chronic back pain and disability. J Bone Miner Res 7:449–456

    Article  CAS  PubMed  Google Scholar 

  2. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

    Article  CAS  PubMed  Google Scholar 

  3. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  CAS  PubMed  Google Scholar 

  4. Kerkeni S, Kolta S, Fechtenbaum J, Roux C (2009) Spinal deformity index (SDI) is a good predictor of incident vertebral fractures. Osteoporos Int 20:1547–1552

    Article  CAS  PubMed  Google Scholar 

  5. Siris ES, Genant HK, Laster AJ, Chen P, Misurski DA, Krege JH (2007) Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int 18:761–770

    Article  CAS  PubMed  Google Scholar 

  6. Briggs AM, Greig AM, Wark JD (2007) The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis. Osteoporos Int 18:575–584

    Article  CAS  PubMed  Google Scholar 

  7. Goh S, Price RI, Leedman PJ, Singer KP (1999) The relative influence of vertebral body and intervertebral disc shape on thoracic kyphosis. Clin Biomech (Bristol, Avon) 14:439–448

    Article  CAS  Google Scholar 

  8. Manns RA, Haddaway MJ, McCall IW, Cassar Pullicino V, Davie MW (1996) The relative contribution of disc and vertebral morphometry to the angle of kyphosis in asymptomatic subjects. Clin Radiol 51:258–262

    Article  CAS  PubMed  Google Scholar 

  9. Katzman W, Cawthon P, Hicks GE, Vittinghoff E, Shepherd J, Cauley JA, Harris T, Simonsick EM, Strotmeyer E, Womack C, Kado DM (2012) Association of spinal muscle composition and prevalence of hyperkyphosis in healthy community-dwelling older men and women. J Gerontol A Biol Sci Med Sci 67:191–195

    Article  PubMed  Google Scholar 

  10. Mika A, Unnithan VB, Mika P (2005) Differences in thoracic kyphosis and in back muscle strength in women with bone loss due to osteoporosis. Spine (Phila Pa 1976) 30:241–246

    Article  Google Scholar 

  11. Birnbaum K, Siebert CH, Hinkelmann J, Prescher A, Niethard FU (2001) Correction of kyphotic deformity before and after transection of the anterior longitudinal ligament—a cadaver study. Arch Orthop Trauma Surg 121:142–147

    Article  CAS  PubMed  Google Scholar 

  12. Roux C, Fechtenbaum J, Kolta S, Said-Nahal R, Briot K, Benhamou CL (2010) Prospective assessment of thoracic kyphosis in postmenopausal women with osteoporosis. J Bone Miner Res 25:362–368

    Article  PubMed  Google Scholar 

  13. Kobayashi T, Takeda N, Atsuta Y, Matsuno T (2008) Flattening of sagittal spinal curvature as a predictor of vertebral fracture. Osteoporos Int 19:65–69

    Article  CAS  PubMed  Google Scholar 

  14. Roussouly P, Pinheiro-Franco JL (2011) Sagittal parameters of the spine: biomechanical approach. Eur Spine J 20(Suppl 5):578–585

    Article  PubMed Central  PubMed  Google Scholar 

  15. Roussouly P, Nnadi C (2010) Sagittal plane deformity: an overview of interpretation and management. Eur Spine J 19:1824–1836

    Article  PubMed Central  PubMed  Google Scholar 

  16. Barrey C, Roussouly P, Le Huec JC, D'Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):S834–S841

    Article  PubMed  Google Scholar 

  17. Schwab F, Lafage V, Boyce R, Skalli W, Farcy JP (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa 1976) 31:E959-67

    Google Scholar 

  18. Schwab F, Lafage V, Patel A, Farcy JP (2009) Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976) 34:1828–1833

    Article  Google Scholar 

  19. Geiger EV, Müller O, Niemeyer T, Kluba T (2007) Adjustment of pelvispinal parameters preserves the constant gravity line position. Int Orthop 31:253–258

    Article  PubMed Central  PubMed  Google Scholar 

  20. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30:2024–2029

    Article  Google Scholar 

  21. Le Huec JC, Aunoble S, Philippe L, Nicolas P (2011) Pelvic parameters: origin and significance. Eur Spine J 20(Suppl 5):564–571

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lamartina C, Berjano P (2014) Classification of sagittal imbalance based on spinal alignment and compensatory mechanisms. Eur Spine J 23:1177–1189

    Article  PubMed  Google Scholar 

  23. Wade R, Yang H, McKenna C, Faria R, Gummerson N, Woolacott N (2013) A systematic review of the clinical effectiveness of EOS 2D/3D X-ray imaging system. Eur Spine 22:296–304

    Article  Google Scholar 

  24. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  25. Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J 16:1459–1467

    Article  PubMed Central  PubMed  Google Scholar 

  26. Roussouly P, Gollogly S, Noseda O, Berthonnaud E, Dimnet JS (2006) The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine (Phila Pa 1976) 31:E320-5

    Google Scholar 

  27. Mac-Thiong JM, Roussouly P, Berthonnaud E, Guigui P (2010) Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine (Phila Pa 1976) 35:E1193-8

    Google Scholar 

  28. Baek SW, Kim C, Chang H (2015) The relationship between the spinopelvic balance and the incidence of adjacent vertebral fractures following percutaneous vertebroplasty. Osteoporos Int 26:1507–1513

    Article  PubMed  Google Scholar 

  29. Obeid I, Hauger O, Aunoble S, Bourghli A, Pellet N, Vital JM (2011) Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee. Eur Spine J 20(Suppl 5):681–685

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

K. Briot received research grants and/or honoraria from Amgen, MSD, Lilly, and Pfizer. J. Fechtenbaum, A. Etcheto, S. Kolta, and A. Feydy have no disclosures to declare. C. Roux received research grants and/or honoraria and/or travel reimbursements from Alexion, Amgen, Bongrain, MSD, and Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Briot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fechtenbaum, J., Etcheto, A., Kolta, S. et al. Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporos Int 27, 559–567 (2016). https://doi.org/10.1007/s00198-015-3283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3283-y

Keywords

Navigation