Skip to main content

Advertisement

Log in

A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis. While much investigation is focused on preventing disease progression, here we fabricate strontium-containing scaffolds and show that they enhance bone defect healing in the femurs of rats induced by ovariectomy.

Introduction

Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis due to its ability to prevent bone loss in osteoporotic patients. Although much emphasis has been placed on using pharmacological agents for the prevention of disease, much less attention has been placed on the construction of biomaterials following osteoporotic-related fracture. The aim of the present study was to incorporate bioactive strontium (Sr) trace element into mesoporous bioactive glass (MBG) scaffolds and to investigate their in vivo efficacy for bone defect healing in the femurs of rats induced by ovariectomy.

Methods

In total, 30 animals were divided into five groups as follows: (1) empty defect (control), (2) empty defects with estrogen replacement therapy, (3) defects filled with MBG scaffolds alone, (4) defects filled with MBG + estrogen replacement therapy, and (5) defects filled with strontium-incorporated mesopore-bioglass (Sr-MBG) scaffolds.

Results

The two groups demonstrating the highest levels of new bone formation were the defects treated with MBG + estrogen replacement therapy and the defects receiving Sr-MBG scaffolds as assessed by μ-CT and histological analysis. Furthermore, Sr scaffolds had a reduced number of tartrate-resistant acid phosphatase-positive cells when compared to other modalities.

Conclusion

The results from the present study demonstrate that the local release of Sr from bone scaffolds may improve fracture repair. Future large animal models are necessary to investigate the future relationship of Sr incorporation into biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fini M, Giavaresi G, Torricelli P, Borsari V, Giardino R, Nicolini A, Carpi A (2004) Osteoporosis and biomaterial osteointegration. Biomed Pharmacother 58:487–493

    Article  CAS  PubMed  Google Scholar 

  2. Fini M, Carpi A, Borsari V, Tschon M, Nicolini A, Sartori M, Mechanick J, Giardino R (2010) Bone remodeling, humoral networks and smart biomaterial technology for osteoporosis. Front Biosci (Schol Ed) 2:468–482

    Article  Google Scholar 

  3. Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C, Epidemiology IOFWGo, Quality of L (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23:2239–2256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Catala-Lopez F, Sanfelix-Gimeno G, Tobias A, Hurtado I, Sanfelix-Genoves J, Peiro S (2013) Efficacy of osteoporosis therapies in a network meta-analysis with indirect comparisons: many concerns for new tools of evidence synthesis? Osteoporos Int 24:1927–1928

    Article  CAS  PubMed  Google Scholar 

  5. Zallone A (2006) Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann N Y Acad Sci 1068:173–179

    Article  CAS  PubMed  Google Scholar 

  6. Almeida M, Iyer S, Martin-Millan M et al (2013) Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest 123:394–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Richette P, Roux C (2012) Impact of treatments for osteoporosis on cartilage biomarkers in humans. Osteoporos Int 23(Suppl 8):S877–S880

    Article  PubMed  Google Scholar 

  8. Roux C, Richette P (2012) Impact of treatments for osteoporosis on osteoarthritis progression. Osteoporos Int 23(Suppl 8):S881–S883

    Article  PubMed  Google Scholar 

  9. Maimoun L, Brennan TC, Badoud I, Dubois-Ferriere V, Rizzoli R, Ammann P (2010) Strontium ranelate improves implant osseointegration. Bone 46:1436–1441

    Article  CAS  PubMed  Google Scholar 

  10. Alegre DN, Ribeiro C, Sousa C, Correia J, Silva L, de Almeida L (2012) Possible benefits of strontium ranelate in complicated long bone fractures. Rheumatol Int 32:439–443

    Article  PubMed  Google Scholar 

  11. Hiligsmann M, Ben Sedrine W, Bruyere O, Reginster JY (2013) Cost-effectiveness of strontium ranelate in the treatment of male osteoporosis. Osteoporos Int 24:2291–2300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Doublier A, Farlay D, Jaurand X, Vera R, Boivin G (2013) Effects of strontium on the quality of bone apatite crystals: a paired biopsy study in postmenopausal osteoporotic women. Osteoporos Int 24:1079–1087

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Feng G, Gao Y, Luo E, Liu X, Hu J (2010) Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res 28:578–582

    CAS  PubMed  Google Scholar 

  14. Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res Off J Am Soc Bone Min Res 22:1419–1425

    Article  CAS  Google Scholar 

  15. Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 18(Suppl 1):S11–S15

    Article  PubMed  Google Scholar 

  16. Kendler DL (2006) Strontium ranelate—data on vertebral and nonvertebral fracture efficacy and safety: mechanism of action. Curr Osteoporos Rep 4:34–39

    Article  PubMed  Google Scholar 

  17. Yan X, Huang X, Yu C, Deng H, Wang Y, Zhang Z, Qiao S, Lu G, Zhao D (2006) The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials 27:3396–3403

    Article  CAS  PubMed  Google Scholar 

  18. Wu C, Fan W, Gelinsky M, Xiao Y, Simon P, Schulze R, Doert T, Luo Y, Cuniberti G (2011) Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater 7:1797–1806

    Article  CAS  PubMed  Google Scholar 

  19. Saravanapavan P, Hench LL (2001) Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. J Biomed Mater Res 54:608–618

    Article  CAS  PubMed  Google Scholar 

  20. Wu C, Chang J, Xiao Y (2011) Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms. Ther Deliv 2:1189–1198

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Cheng N, Miron R, Shi B, Cheng X (2012) Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 33:6698–6708

    Article  CAS  PubMed  Google Scholar 

  22. Wu C, Zhou Y, Lin C, Chang J, Xiao Y (2012) Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater 8:3805–3815

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Wei L, Chang J, Miron RJ, Shi B, Yi S, Wu C (2013) Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J Mater Chem B 1:5711–5722

    Article  CAS  Google Scholar 

  24. Cheng N, Dai J, Cheng X, Li S, Miron RJ, Wu T, Chen W, Zhang Y, Shi B (2013) Porous CaP/silk composite scaffolds to repair femur defects in an osteoporotic model. J Mater Sci Mater Med 24:1963–1975

    Article  CAS  PubMed  Google Scholar 

  25. Miron RJ, Wei L, Bosshardt DD, Buser D, Sculean A, Zhang Y (2013) Effects of enamel matrix proteins in combination with a bovine-derived natural bone mineral for the repair of bone defects. Clin Oral Investig

  26. Wei L, Miron RJ, Shi B, Zhang Y (2013) Osteoinductive and osteopromotive variability among different demineralized bone allografts. Clin Implant Dent Relat Res. doi:10.1111/cid.12118

    Google Scholar 

  27. Alt V, Thormann U, Ray S et al (2013) A new metaphyseal bone defect model in osteoporotic rats to study biomaterials for the enhancement of bone healing in osteoporotic fractures. Acta Biomater 9:7035–7042

    Article  CAS  PubMed  Google Scholar 

  28. Canettieri AC, Colombo CE, Chin CM, Faig-Leite H (2009) Femur bone repair in ovariectomized rats under the local action of alendronate, hydroxyapatite and the association of alendronate and hydroxyapatite. Int J Exp Pathol 90:520–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Miron RJ, Zhang YF (2012) Osteoinduction: a review of old concepts with new standards. J Dent Res 91:736–744

    Article  CAS  PubMed  Google Scholar 

  30. Barrere F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine 1:317–332

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Yu J, Li K, Zheng X, He D, Ye X, Wang M (2013) In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants. PLoS One 8:e57564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schilling AF, Linhart W, Filke S, Gebauer M, Schinke T, Rueger JM, Amling M (2004) Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials 25:3963–3972

    Article  CAS  PubMed  Google Scholar 

  33. Haynes DR, Crotti TN, Zreiqat H (2004) Regulation of osteoclast activity in peri-implant tissues. Biomaterials 25:4877–4885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in University (NCET-11-0414), Excellent Youth Foundation of Hubei and the funds of the National Natural Science Foundation of China (81271108).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Wu or Y. Zhang.

Additional information

Lingfei Wei and Jin Ke contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Ke, J., Prasadam, I. et al. A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos Int 25, 2089–2096 (2014). https://doi.org/10.1007/s00198-014-2735-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2735-0

Keywords

Navigation