Skip to main content
Log in

Postresuscitation myocardial dysfunction: correlated factors and prognostic implications

Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate the clinical factors correlated with postresuscitation myocardial dysfunction and the prognostic implication such dysfunction may have.

Design and setting

Prospective observational study in a university medical center

Patients

58 adult patients successfully resuscitated from nontraumatic out-of-hospital cardiac arrest over 2 years.

Measments and results

Echocardiographic evaluation of the left ventricular systolic and diastolic functions was performed 6 h postresuscitation and was analyzed in correlation to the clinical features and resuscitation factors. Univariate analysis revealed left ventricular ejection fraction (LVEF) to be significantly lower in patients with hypertension, past history of myocardial infarction, resuscitation duration longer than 20 min, defibrillation, and use of more than 5 mg epinephrine. Isovolumic relaxation time (IVRT) was significantly longer in patients with noncardiac cause and initial rhythm of nonventricular fibrillation/tachycardia. Multiple regression analysis showed epinephrine dose and past history of myocardial infarction to be independent factors for LVEF, while the cause of cardiac arrest was independently associated with IVRT. For prognosis, 27 patients survived to hospital discharge. Both LVEF under 40% and IVRT 100 ms or longer were associated with poor survival outcomes. In Cox regression analysis IVRT 100 ms or longer served as an independent factor predicting poor survival prognosis.

Conclusions

Postresuscitation left ventricular dysfunction is correlated with a number of clinical factors, among which past history of myocardial infarction, epinephrine dose, and the cause of cardiac arrest play independent roles. Meanwhile, IVRT 100 ms or longer 6 h postresuscitation predicts poor survival outcomes and serves as a marker of poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Gillum RF (1989) Sudden coronary death in the United States, 1980–1985. Circulation 79:756–765

    PubMed  CAS  Google Scholar 

  2. Kern KB (2002) Postresuscitation myocardial dysfunction. Cardiol Clin 20:89–101

    Article  PubMed  Google Scholar 

  3. Schoenenberger RA, von Planta M, von Planta I (1994) Survival after failed out-of-hospital resuscitation. Arch Intern Med 154:2433–2437

    Article  PubMed  CAS  Google Scholar 

  4. Laver S, Farrow C, Turner D, Nolan J (2004) Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 30:2126–2128

    Article  PubMed  Google Scholar 

  5. Tang W, Weil MH, Sun S, Gazmuri RJ, Bisera J (1993) Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 21:1046–1050

    Article  PubMed  CAS  Google Scholar 

  6. Gazmuri R, Weil MH, Bisera J, Tang W, Fukui M, McKee D (1996) MyoCardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 24:992–1000

    Article  PubMed  CAS  Google Scholar 

  7. Kern KB, Hilwig RW, Rhee KH, Berg RA (1996) MyoCardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol 28:232–240

    Article  PubMed  CAS  Google Scholar 

  8. Plamer BS, Hadziahmetovic M, Veci T, Angelos MG (2004) Global ischemic duration and reperfusion function in the isolated perfused rat heart. Resuscitation 62:97–106

    Article  Google Scholar 

  9. Yamaguchi H, Weil MH, Tang W, Kamohara T, Jin X, Bisera J (2002) MyoCardial dysfunction after electrical defibrillation. Resuscitation 54:289–296

    Article  PubMed  Google Scholar 

  10. Xie J, Weil MH, Sun S, Tang W, Sato Y, Jin X, Bisera J (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688

    PubMed  CAS  Google Scholar 

  11. Gazmuri RJ, Deshmukh S, Shah PR (2000) MyoCardial effects of repeated electrical defibrillation in the isolated fibrillating rat heart. Crit Care Med 28:2690–2696

    Article  PubMed  CAS  Google Scholar 

  12. Tang W, Weil MH, Sun S, Yamaguchi H, Povoas HP, Pernat AM, Bisera J (1999) The effects of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function. J Am Coll Cardiol 34:815–822

    Article  PubMed  CAS  Google Scholar 

  13. Tang W, Weil MH, Sun S, Jorgenson D, Morgan C, Klouche K, Synder D (2004) The effects of biphasic waveform design on post-resuscitation myocardial function. J Am Coll Cardiol 43:1228–1235

    Article  PubMed  Google Scholar 

  14. Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093

    PubMed  CAS  Google Scholar 

  15. Kern KB, Hilwig RW, Berg RA, Rhee KH, Sanders AB, Otto CW, Ewy GA (1997) Postresuscitation left ventricular systolic and diastolic dysfunction: treatment with dobutamine. Circulation 95:2610–2613

    PubMed  CAS  Google Scholar 

  16. Zhao L, Zhang W, Zhang W, Zheng Y (2000) The effects of high-dose epinephrine combined with isoprenaline on isolated rabbit heart and cardiomyocytes after cardioversion of ventricular fibrillation. Mol Cell Biochem 207:71–75

    Article  PubMed  CAS  Google Scholar 

  17. Angelos MG, Murray HN, Waite MD, Gorsline RT (2002) Postischemic inotropic support of the dysfunctional heart. Crit Care Med 30:410–416

    Article  PubMed  Google Scholar 

  18. Tang W, Well MH, Sun S, Pernat A, Mason E (2000) KATP channel activation reduces the severity of post-resuscitation myocardial dysfunction. Am J Physiol Heart Circ Physiol 279:1609–1615

    Google Scholar 

  19. Zaugg CE, Ziegler A, Lee RJ, Barbosa V, Buser PT (2002) Postresuscitation stunning: postfibrillatory myocardial dysfunction caused by reduced myofilament Ca2+ responsiveness after ventricular fibrillation-induced myocyte Ca2+ overload. J Cardiovasc Electrophysiol 13:1017–1024

    Article  PubMed  Google Scholar 

  20. Tennyson H, Kern KB, Hilwig RW, Berg RA, Ewy GA (2002) Treatment of postresuscitation myocardial dysfunction: aortic counterpulsation versus dobutamine. Resuscitation 54:69–75

    Article  PubMed  Google Scholar 

  21. Vasquez A, Kern KB, Hilwig RW, Heidenreich J, Berg RA, Ewy GA (2004) Optimal dosing of dobutamine for treating post-resuscitation left ventricular dysfunction. Resuscitation 61:199–207

    Article  PubMed  CAS  Google Scholar 

  22. Mullner M, Domanovits H, Sterz F, Herkner H, Gamper G, Kurkciyan I, Laggner AN (1998) Measment of myocardial contractility following successful resuscitation: quantitated left ventricular systolic function utilizing non-invasive wall stress analysis. Resuscitation 39:51–59

    Article  PubMed  CAS  Google Scholar 

  23. Laurent I, Monchi M, Chiche JD, Joly LM, Spaulding C, Bourgeois B, Cariou A, Rozenberg A, Carli P, Weber S, Dhainaut JF (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 40:2110–2116

    Article  PubMed  Google Scholar 

  24. Cummins RO, Chamberlain DA, Abramson NS, Allen M, Baskett PJ, Becker L, Bossaert L, Delooz HH, Dick WF, Eisenberg MS (1991) Recommendation guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein style. A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian resuscitation Council. Circulation 84:960–975

    PubMed  CAS  Google Scholar 

  25. Sahn D, DeMaria A, Kisslo J, Weyman A (1978) Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 58:1072–1077

    PubMed  CAS  Google Scholar 

  26. Schiller NB, Shah PM, Crawford M, Demaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr 2:358–367

    PubMed  CAS  Google Scholar 

  27. Stiell IG, Wells GA, Hebert PC, Laupacis A, Weitzman BN (1995) Association of drug therapy with survival in cardiac arrest: limited role of advanced cardiac life support drugs. Acad Emerg Med 2:264–273

    Article  PubMed  CAS  Google Scholar 

  28. Layon AJ, Gabrielli A, Goldfeder BW, Hevia A, Idris AH (2003) Utstein style analysis of rural out-of-hospital cardiac arrest [OOHCA]: total cardiopulmonary resuscitation time inversely correlates with hospital discharge rate. Resuscitation 56:59–66

    Article  PubMed  Google Scholar 

  29. Niemann JT, Garner D, Lewis RJ (2003) Left ventricular function after monophasic and biphasic waveform defibrillation: the impact of cardiopulmonary resuscitation time on contractile indices. Acad Emerg Med 10:9–15

    Article  PubMed  Google Scholar 

  30. Roberts D, Landolfo K, Dobson K, Light RB (1990) The effects of methoxamine and epinephrine on survival and regional distribution of cardiac output in dogs with prolonged ventricular fibrillation. Chest 98:999–1005

    PubMed  CAS  Google Scholar 

  31. Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093

    PubMed  CAS  Google Scholar 

  32. Berg RA, Otto CW, Kern KB, Sanders AB, Hilwig RW, Hansen KK, Ewy GA (1994) High-dose epinephrine results in greater early mortality after resuscitation from prolonged cardiac arrest in pigs, a prospective, randomized study. Crit Care Med 22:282–290

    Article  PubMed  CAS  Google Scholar 

  33. Ditchey RV, Lindenfeld J (1988) Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation 78:382–389

    PubMed  CAS  Google Scholar 

  34. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocyte by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    PubMed  CAS  Google Scholar 

  35. Fu YC, Chi CS, Yin SC, Hwang B, Chiu YT, Hsu SL (2004) Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNFα-caspase signaling pathway. Cardiovasc Res 62:558–567

    Article  PubMed  CAS  Google Scholar 

  36. Schober KE, Fuentes VL, Bonagura JD (2003) Comparison between invasive hemodynamic measurements and noninvasive assessment of left ventricular diastolic function by use of Doppler echocardiography in healthy anesthetized cats. Am J Vet Res 64:93–103

    Article  PubMed  CAS  Google Scholar 

  37. Klouche K, Weil MH, Sun S, Tang W, Povoas HP, Kamohara T, Bisera J (2002) Evolution of the stone heart after prolonged cardiac arrest. Chest 122:1006–1011

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a study grant 90N-016 from National Taiwan University Hospital, Taipei, Taiwan, R.O.C. The authors thank all medical and nursing staffs involved in the CPR and postresuscitation care of the patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jone Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, WT., Ma, M.HM., Chien, KL. et al. Postresuscitation myocardial dysfunction: correlated factors and prognostic implications. Intensive Care Med 33, 88–95 (2007). https://doi.org/10.1007/s00134-006-0442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0442-9

Keywords

Navigation