Skip to main content
Log in

Effects of a backboard, bed height, and operator position on compression depth during simulated resuscitation

  • Brief Report
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effect of a backboard, cardiopulmonary resuscitation (CPR) provider body position and bed height on the quality of chest compression during simulated in-hospital resuscitation.

Design and setting

Randomised controlled cross-over trial in a university hospital.

Participants

Second-year medical student basic life support instructors.

Interventions

Chest compressions performed on a resuscitation manikin placed on a hospital bed with/without a CPR backboard, kneeling on the bed adjacent to the manikin and lowering the height of the bed.

Measurements and results

Sub-optimal chest compressions were performed on all surfaces. There were no differences in compression depth: standard CPR, 29 ± 7 mm; backboard CPR, 31 ± 10 mm; kneeling on the bed, 30 ± 7 mm; lowering bed height, 32 ± 10 mm. Compression rate and duty cycle were similar on each surface. Participants failed to recognise their poor quality CPR, and there was no difference in assessment of fatigue or efficacy of CPR between surfaces.

Conclusions

In contrast to current guidelines, the use of a CPR backboard did not improve chest compressions. Furthermore, kneeling on the bed adjacent to the victim or lowering bed height did not impact materially on the quality of chest compression. These findings should be validated in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bur A, Kittler H, Sterz F, Holzer M, Eisenburger P, Oschatz E, Kofler J, Laggner AN (2001) Effects of bystander first aid, defibrillation and advanced life support on neurologic outcome and hospital costs in patients after ventricular fibrillation cardiac arrest. Intensive Care Med 27:1474–1480

    Article  PubMed  CAS  Google Scholar 

  2. Gallagher EJ, Lombardi G, Gennis P (1995) Effectiveness of bystander cardiopulmonary resuscitation and survival following out-of-hospital cardiac arrest. JAMA 274:1922–1925

    Article  PubMed  CAS  Google Scholar 

  3. Abella BS, Alvarado JP, Myklebust H, Edelson DP, Barry A, O'Hearn N, Vanden Hoek TL, Becker LB (2005) Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 293:305–310

    Article  PubMed  CAS  Google Scholar 

  4. Abella BS, Sandbo N, Vassilatos P, Alvarado JP, O'Hearn N, Wigder HN, Hoffman P, Tynus K, Vanden Hoek TL, Becker LB (2005) Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 111:428–434

    Article  PubMed  Google Scholar 

  5. International Liaison Committee for Resuscitation (2005) Adult basic life support. II. Resuscitation 67:187–201

    Article  Google Scholar 

  6. Yu T, Weil MH, Tang W, Sun S, Klouche K, Povoas H, Bisera J (2002) Adverse outcomes of interrupted precordial compression during automated defibrillation. Circulation 106:368–372

    Article  PubMed  Google Scholar 

  7. Sato Y, Weil MH, Sun S, Tang W, Xie J, Noc M, Bisera J (1997) Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation. Crit Care Med 25:733–736

    Article  PubMed  CAS  Google Scholar 

  8. Allen M, Augre C, Rogers H, Perkins GD (2004) Does bed height effect the efficacy of chest compressions? Resuscitation 62:323

    Google Scholar 

  9. Smith CM, Stephenson BTF, Gao F, Perkins GD (2004) The effect of a back board on CPR performance. Resuscitation 62:337

    Google Scholar 

  10. Perkins GD, Hulme J, Bion JF (2002) Peer-led resuscitation training for healthcare students: a randomised controlled study. Intensive Care Med 28:698–700

    Article  PubMed  Google Scholar 

  11. Perkins GD, Augre C, Rogers H, Allan M, Thickett DR (2005) CPREzy: an evaluation during simulated cardiac arrest on a hospital bed. Resuscitation 64:103–108

    Article  PubMed  Google Scholar 

  12. Handley AJ, Koster R, Monsieurs K, Perkins GD, Davies S, Bossaert L (2005) European Resuscitation Council guidelines for resuscitation 2005. Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation 67 [Suppl 1]:S7–S23

  13. Bellamy RF, DeGuzman LR, Pedersen DC (1984) Coronary blood flow during cardiopulmonary resuscitation in swine. Circulation 69:174–180

    PubMed  CAS  Google Scholar 

  14. Ornato JP, Levine RL, Young DS, Racht EM, Garnett AR, Gonzalez ER (1989) The effect of applied chest compression force on systemic arterial pressure and end-tidal carbon dioxide concentration during CPR in human beings. Ann Emerg Med 18:732–737

    Article  PubMed  CAS  Google Scholar 

  15. Tweed M, Tweed C, Perkins GD (2001) The effect of differing support surfaces on the efficacy of chest compressions using a resuscitation manikin model. Resuscitation 51:179–183

    Article  PubMed  CAS  Google Scholar 

  16. Boe JM, Babbs CF (1999) Mechanics of cardiopulmonary resuscitation performed with the patient on a soft bed vs a hard surface. Acad Emerg Med 6:754–757

    PubMed  CAS  Google Scholar 

  17. Perkins GD, Benny R, Giles S, Gao F, Tweed MJ (2003) Do different mattresses affect the quality of cardiopulmonary resuscitation? Intensive Care Med 29:2330–2335

    Article  PubMed  Google Scholar 

  18. Hightower D, Thomas SH, Stone CK, Dunn K, March JA (1995) Decay in quality of closed-chest compressions over time. Ann Emerg Med 26:300–303

    Article  PubMed  CAS  Google Scholar 

  19. Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T (2002) Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation 55:285–299

    Article  PubMed  Google Scholar 

  20. Castillo C, Young C, Bisera J, Weil MH (2004) Miniaturized chest compressor. Crit Care Med 32:S366–S368

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Resuscitation Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin D. Perkins.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perkins, G.D., Smith, C.M., Augre, C. et al. Effects of a backboard, bed height, and operator position on compression depth during simulated resuscitation. Intensive Care Med 32, 1632–1635 (2006). https://doi.org/10.1007/s00134-006-0273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0273-8

Keywords

Navigation