Skip to main content
Log in

Evaluation and management of decompression illness—an intensivist’s perspective

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Decompression illness (DCI) is becoming more prevalent as more people engage in activities involving extreme pressure environments such as recreational scuba-diving. Rapid diagnosis and treatment offer these patients the best chance of survival with minimal sequelae. It is thus important that critical care physicians are able to evaluate and diagnose the signs and symptoms of DCI. The cornerstones of current treatment include the administration of hyperbaric oxygen and adjunctive therapies such as hydration and medications. However, managing patients in a hyperbaric environment does present additional challenges with respect to the particular demands of critical care medicine in an altered pressure environment. This article reviews the underlying pathophysiology, clinical presentation and therapeutic options available to treat DCI, from the intensivist’s perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Strauss RH (1979) Diving medicine. Am Rev Respir Dis 119:1001–1023

    CAS  PubMed  Google Scholar 

  2. Melamed Y, Shupak A, Bitterman H (1992) Medical problems associated with underwater diving. N Engl J Med 326:30–35

    CAS  PubMed  Google Scholar 

  3. Neuman TS (2002) Arterial gas embolism and decompression sickness. News Physiol Sci 17:77–81

    PubMed  Google Scholar 

  4. Calder IM (1985) Autopsy and experimental observations on factors leading to barotrauma in man. Undersea Biomed Res 12:165–182

    CAS  PubMed  Google Scholar 

  5. Clarke D, Gerard W, Norris T (2002) Pulmonary barotrauma-induced cerebral arterial gas embolism with spontaneous recovery: commentary on the rationale for therapeutic recompression. Aviat Space Environ Med 73:139–146

    CAS  PubMed  Google Scholar 

  6. Eckenhoff RG, Olstad CS, Carrod G (1990) Human dose-response relationship for decompression and endogenous bubble formation. J Appl Physiol 69:914–918

    CAS  PubMed  Google Scholar 

  7. Butler BD, Hills BA (1979) The lung as a filter for microbubbles. J Appl Physiol 47:537–543

    CAS  PubMed  Google Scholar 

  8. Butler BD, Hills BA (1985) Transpulmonary passage of venous air emboli. J Appl Physiol 59:543–547

    CAS  PubMed  Google Scholar 

  9. Kerut EK, Norfleet WT, Plotnick GD, Giles TD (2001) Patent foramen ovale: a review of associated conditions and the impact of physiological size. J Am Coll Cardiol 38:613–623

    CAS  PubMed  Google Scholar 

  10. Wilmshurst PT, Byrne JC, Webb-Peploe MM (1989) Relation between intra-atrial shunts and decompression sickness in divers. Lancet ii:1302–1306

    Google Scholar 

  11. Ward CA, McCullough D, Fraser WD (1987) Relation between complement activation and susceptibility to decompression sickness. J Appl Physiol 62:1160–1166

    CAS  PubMed  Google Scholar 

  12. Helps SC, Gorman DF (1991) Air embolism of the brain in rabbits pretreated with mechlorethamine. Stroke 22:351–354

    CAS  PubMed  Google Scholar 

  13. Levin LL, Stewart GJ, Lynch PR, Bove AA (1981) Blood and blood vessel wall changes induced by decompression sickness in dogs. J Appl Physiol 50:944–949

    CAS  PubMed  Google Scholar 

  14. Divers Alert Network. Report on decompression illness, diving fatalities and project dive exploration (2001) The DAN annual review of recreational scuba-diving injuries and fatalities based on 1999 data. Divers Alert Network, Durham, NC

  15. British Thoracic Society fitness to dive group, a subgroup of the British Thoracic Society standards of care committee (2003) British Thoracic Society guidelines on respiratory aspects of fitness for diving. Thorax 58:3–13

    Google Scholar 

  16. Tetzlaff K, Reuter M, Leplow B, Heller M, Bettinghausen E (1997) Risk factors for pulmonary barotrauma in divers. Chest 112:654–659

    CAS  PubMed  Google Scholar 

  17. Zaugg M, Kaplan V, Widmer U, Bauman PC, Russi EW (1998) Fatal air embolism in an airplane passenger with a giant intrapulmonary bronchogenic cyst. Am J Respir Crit Care Med 157:1686–1689

    CAS  PubMed  Google Scholar 

  18. Saary MJ, Gray GW (2001) A review of the relationship between patent foramen ovale and type II decompression sickness. Aviat Space Environ Med 72:1113–1120

    CAS  PubMed  Google Scholar 

  19. Ryles MT, Pilmanis AA (1996) The initial signs and symptoms of altitude decompression sickness. Aviat Space Environ Med 67:983–989

    CAS  PubMed  Google Scholar 

  20. Krause KM, Pilmanis AA (2000) The effectiveness of ground level oxygen treatment for altitude decompression sickness in human research subjects. Aviat Space Environ Med 71:115–118

    CAS  PubMed  Google Scholar 

  21. Wilmshurst P, Bryson P (2000) Relationship between the clinical features of neurological decompression illness and its causes. Clin Sci 99:65–75

    CAS  Google Scholar 

  22. Freiburger JJ, Denoble PJ, Pieper CF, Uguccioni DM, Pollock NW, Vann RD (2002) The relative risk of decompression sickness during and after air travel following diving. Aviat Space Environ Med 73:980–984

    Google Scholar 

  23. Dick APK, Massey EW (1985) Neurologic presentation of decompression sickness and air embolism in sport divers. Neurology 35:667–671

    CAS  PubMed  Google Scholar 

  24. Balldin UI, Pilmanis AA, Webb JT (2002) Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli. Aviat Space Environ Med 73:996–999

    PubMed  Google Scholar 

  25. Nachum Z, Shupak A, Spitzer O, Sharoni Z, Doweck I, Gordon CR (2001) Inner ear decompression sickness in sport compressed-air diving. Laryngoscope 111:851–856

    CAS  PubMed  Google Scholar 

  26. Shank ES, Muth CM (2001) Case report on a diver with decompression injury, elevation of serum transaminases and rhabdomyolysis. Ann Emerg Med 37:533–536

    CAS  PubMed  Google Scholar 

  27. Leitch DR, Green RD (1986) Pulmonary barotrauma in divers and the treatment of cerebral arterial gas embolism. Aviat Space Environ Med 57:931–938

    CAS  PubMed  Google Scholar 

  28. Neuman TS, Bove AA (1990) Combined arterial gas embolism and decompression sickness following no-stop dives. Undersea Biomed Res 17:429–436

    CAS  PubMed  Google Scholar 

  29. Ball R (1993) Effect of severity, time to recompression with oxygen and re-treatment on outcome in forty-nine cases of spinal cord decompression sickness. Undersea Hyperb Med 20:133–145

    CAS  PubMed  Google Scholar 

  30. Rudge FW, Shafer MR (1991) The effect of delay on treatment outcome in altitude-induced decompression sickness. Aviat Space Environ Med 62:687–690

    CAS  PubMed  Google Scholar 

  31. Moon RE, Sheffield PJ (1997) Guidelines for treatment of decompression illness. Aviat Space Environ Med 68:234–243

    CAS  PubMed  Google Scholar 

  32. Smith RM, Neuman TS (1994) Elevation of serum creatine kinase in divers with arterial gas embolization. N Engl J Med 330:19–24

    CAS  PubMed  Google Scholar 

  33. Hyldegaard O, Madsen J (1994) Effect of air, heliox and oxygen breathing on air bubbles in aqueous tissues in the rat. Undersea Hyperb Med 21:413–424

    CAS  PubMed  Google Scholar 

  34. Kizer KW (1987) Dysbaric cerebral air embolism in Hawaii. Ann Emerg Med 16:535–541

    CAS  PubMed  Google Scholar 

  35. Annane D, Trouché G, Delisle F, Devauchelle P, Paraire F, Raphael JC, Gajdos P (1994) Effects of mechanical ventilation with normobaric oxygen therapy on the rate of air removal from cerebral arteries. Crit Care Med 22:851–857

    CAS  PubMed  Google Scholar 

  36. Boussuges A, Blanc P, Molenat F, Bergmann E, Sainty JM (1996) Haemoconcentration in neurological decompression illness. Int J Sports Med 17:351–355

    CAS  PubMed  Google Scholar 

  37. Muth CM, Shank ES (2000) Gas embolism. N Engl J Med 342:476–482

    CAS  PubMed  Google Scholar 

  38. Butler BD, Laine GA, Leiman BC, Warters D, Kurusz M, Sutton T, Katz J (1988) Effects of the Trendelenburg position on the distribution of arterial air emboli in dogs. Ann Thorac Surg 45:198–202

    CAS  PubMed  Google Scholar 

  39. Wass CT, Lanier WL, Hofer RE, Scheithauer BW, Andrews AG (1995) Temperature changes of ≥1°C alter functional neurological outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology 83:325–335

    CAS  PubMed  Google Scholar 

  40. Branger AB, Eckmann DM (1999) Theoretical and experimental intravascular gas embolism absorption dynamics. J Appl Physiol 87:1287–1295

    CAS  PubMed  Google Scholar 

  41. Leach RM, Rees PJ, Wilmshurst P (1998) Hyperbaric oxygen therapy. BMJ 317:1140–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mink RB, Dutka AJ (1995) Hyperbaric oxygen after global cerebral ischemia in rabbits reduces brain vascular permeability and blood flow. Stroke 26:2307–2312

    CAS  PubMed  Google Scholar 

  43. Thom SR, Mendiguren I, Hardy K, Bolotin T, Fisher D, Nebolon M, Kilpatrick L (1997) Inhibition of human neutrophil beta2-integrin-dependent adherence by hyperbaric O2. Am J Physiol 272:C770–777

    CAS  PubMed  Google Scholar 

  44. Hyldegaard O, Kerem D, Melamed Y (2001) Effect of combined recompression and air, oxygen or heliox breathing on air bubbles in the rat. J Appl Physiol 90:1639–1647

    CAS  PubMed  Google Scholar 

  45. Leitch DR, Greenbaum LJ Jr, Hallenbeck JM (1984) Cerebral air embolism: II. Effect of pressure and time on cortical evoked potential recovery. Undersea Biomed Res 11:237–248

    CAS  PubMed  Google Scholar 

  46. McDermott JJ, Dutka AJ, Koller WA, Flynn ET (1992) Effects of an increased pO2 during recompression therapy for the treatment of experimental cerebral arterial gas embolism. Undersea Biomed Res 19:403–413

    CAS  PubMed  Google Scholar 

  47. Shupak A, Melamed Y, Ramon Y, Bentur Y, Abramovich A, Kol S (1997) Helium and oxygen treatment of severe air-diving-induced neurologic decompression sickness. Arch Neurol 54:305–311

    CAS  PubMed  Google Scholar 

  48. Muth CM, Radermacher P, Shank ES (2002) When HBO meets the ICU—intensive care patients in the hyperbaric environment. In: Bakker DJ, Cramer FS (eds) Hyperbaric surgery. Best Publishing, Flagstaff, USA, pp 111–158

  49. Weaver LK (1999) Operational use and patient care in the monoplace hyperbaric chamber. Respir Care Clin N Am 5:51–92

    CAS  PubMed  Google Scholar 

  50. Weaver LK, Howe S (1992) Normobaric measurement of arterial oxygen tension in subjects exposed to hyperbaric oxygen. Chest 102:1175–1181

    CAS  PubMed  Google Scholar 

  51. Barach P (2000) Management of the critically ill patient in the hyperbaric chamber. Int Anesthesiol Clin 38:153–66

    CAS  PubMed  Google Scholar 

  52. Lavon H, Shupak A, Tal D, Ziser A, Abramovich A, Yanir Y, Shoshani O, Gil A, Leiba R, Nachum Z (2002) Performance of infusion pumps during hyperbaric conditions. Anesthesiology 96:849–854

    PubMed  Google Scholar 

  53. Presswood G, Zamboni WA, Stephenson LL, Santos PM (1994) Effect of artificial airway on ear complications from hyperbaric oxygen. Laryngoscope 104:1383–1384

    CAS  PubMed  Google Scholar 

  54. Camporesi EM (1999) Anesthesia in the hyperbaric environment. In: Jain KK (ed) Textbook of hyperbaric medicine, 3rd edn. Hogrefe & Huber, Seattle, pp 549–555

  55. Blanch PB, Desaultes DA, Gallagher TJ (1991) Deviations in function of mechanical ventilators during hyperbaric compression. Respir Care 36:808–814

    Google Scholar 

  56. Stahl W, Radermacher P, Calzia E (2000) Functioning of ICU ventilators under hyperbaric conditions—comparison of volume- and pressure-controlled modes. Intensive Care Med 26:442–448

    CAS  PubMed  Google Scholar 

  57. Ryu KH, Hindman BJ, Reasoner DK, Dexter F (1996) Heparin reduces neurological impairment after cerebral arterial gas embolism in the rabbit. Stroke 27:303–310

    CAS  PubMed  Google Scholar 

  58. Kizer KW (1981) Corticosteroids in treatment of serious decompression sickness. Ann Emerg Med 10:485–488

    CAS  PubMed  Google Scholar 

  59. Ito U, Ohno K, Suganuma Y, Suzuki Y, Inaba Y (1980) The effect of steroids on ischemic brain edema. Stroke 11:166–172

    CAS  PubMed  Google Scholar 

  60. Sapolsky RM, Pulsinelly WA (1985) Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 229:1397–1400

    CAS  PubMed  Google Scholar 

  61. Dutka AJ, Mink RB, Pearson RR, Hallenbeck JM (1992) Effects of treatment with dexamethasone on recovery from cerebral arterial gas embolism. Undersea Biomed Res 19:131–141

    CAS  PubMed  Google Scholar 

  62. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J, et al. (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322:1405–1411

    CAS  PubMed  Google Scholar 

  63. Evans DE, Kobrine AI, LeGrys DC, Bradley ME (1984) Protective effect of lidocaine in acute cerebral ischemia induced by air embolism. J Neurosurg 60:257–263

    CAS  PubMed  Google Scholar 

  64. Evans DE, Catron PW, McDermott JJ, Thomas LB, Kobrine AI, Flynn ET (1989) Therapeutic effect of lidocaine in experimental cerebral ischemia induced by air embolism. J Neurosurg 70:97–102

    CAS  PubMed  Google Scholar 

  65. Dutka AJ, Mink R, McDermott JJ, Clark JB, Hallenbeck JM (1992) Effect of lidocaine on somatosensory evoked response and cerebral blood flow after canine cerebral air embolism. Stroke 23:1515–1520

    CAS  PubMed  Google Scholar 

  66. Mitchell SJ, Pellett O, Gorman DF (1999) Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg 67:1117–1124

    CAS  PubMed  Google Scholar 

  67. Moon RE (1997) Treatment of decompression sickness and arterial gas embolism. In: Bove AA (ed) Diving medicine. Saunders, Philadelphia, pp 184–204

  68. Warren LP, Djang WT, Moon RE, Camporesi EM, Sallee DS, Anthony DC, Massey EW, Burger PC, Heinz ER (1988) Neuroimaging of scuba diving injuries to the CNS. Am J Radiol 151:1003–1008

    Google Scholar 

  69. Reuter M, Tetzlaff K, Hutzelmann A, Fritsch G, Steffens JC, Bettinghausen, Heller M (1997) MR imaging of the central nervous system in diving-related decompression illness. Acta Radiol 38:940–944

    CAS  PubMed  Google Scholar 

  70. Russi EW (1998) Diving and the risk of barotrauma. Thorax 53 (Suppl 2):S20-S24

    PubMed  PubMed Central  Google Scholar 

  71. The COPD Guidelines Group of the Standards of Care Committee of the BTS (1997) BTS Guidelines for the Management of Chronic Obstructive Pulmonary Disease. Thorax 52 (Suppl 5): S1-S28

    Google Scholar 

  72. Germonpré P, Dendale P, Unger P, Balestra C (1998) Patent foramen ovale and decompression sickness in sports divers. J Appl Physiol 84:1622–1626

    PubMed  Google Scholar 

  73. Walsh KP, Wilmshurst PT, Morrison WC (1999) Transcatheter closure of patent foramen ovale using the Amplatzer septal occluder to prevent recurrence of neurological decompression illness in divers. Heart 81:257–261

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Tetzlaff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetzlaff, K., Shank, E.S. & Muth, C.M. Evaluation and management of decompression illness—an intensivist’s perspective. Intensive Care Med 29, 2128–2136 (2003). https://doi.org/10.1007/s00134-003-1999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-1999-1

Keywords

Navigation