Skip to main content
Log in

Schockraumhämoglobin

Prädiktor für eine Gerinnungsstörung beim Traumapatienten

Trauma bay haemoglobin level

Predictor of coagulation disorder in major trauma

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Eine frühe und aggressive Therapie einer traumainduzierten Koagulopathie (TIK) erscheint zur Prognoseverbesserung von Traumapatienten essentiell. Die initiale Verfügbarkeit von Standardlaborparametern ist jedoch mit zeitlicher Latenz verbunden und viskoelastische Verfahren sind nicht in allen Traumazentren etabliert.

Fragestellung

Vor diesem Hintergrund wurde ein Parameter gesucht, der mittels Blutgasanalyse schnell verfügbar ist und gleichzeitig gut mit den entsprechenden Gerinnungsparametern korreliert.

Methode

Für alle Patienten eines überregionalen Traumazentrums wurde im Zeitraum 2005–2011 die Korrelation (Korrelationskoeffizient r nach Pearson) zwischen erstem bestimmten Hämoglobinwert, gleichzeitig ermittelten Gerinnungsparametern (Quick-Wert, PTT, Thrombozyten) und Parametern die eine Perfusionsstörung des Gewebes (Laktat, „base excess“, BE) anzeigen geprüft. Einschlusskriterien waren: primäre Versorgung, „Injury Severity Score“ (ISS) > 9, RISC-Prognose vorhanden und Schockraumhämoglobinwert (Hb) vorhanden.

Ergebnisse

Die Einschlusskriterien erfüllten 425 Patienten (Durchschnittsalter 43,3 Jahre, 76 % männlich, durchschnittlicher ISS = 30,4). Es zeigte sich eine signifikante Korrelation (p < 0,01) zwischen Hb und Quick-Wert (r = 0,652), Hb und partielle Thromboplastinzeit (PTT, r = − 0,434), Hb und Thrombozyten (r = 0,501), und Hb und BE (r = 0,408) und keine signifikante Korrelation von Hb und Laktat (r = − 0,239).

Schlussfolgerung

Die Korrelation von Hb und Quick-Wert könnten gegebenenfalls als Grundlage einer hämoglobingestützten frühen Gerinnungstherapie dienen. Die Ergebnisse dieser Arbeit sollten an einem noch größeren Traumakollektiv verifiziert werden.

Abstract

Background

Trauma-induced coagulopathy is common in patients with major trauma and requires early and appropriate treatment for bleeding control. Even in emergency laboratory, the availability of standard coagulation tests is associated with certain latencies and devices for viscoelastic haemostasis diagnosis (thromboelastometry) are not routinely established in major trauma centres.

Purpose

We searched for a laboratory parameter with fast availability by point of care blood gas analysis and reliable correlation with coagulation parameters.

Methods

We analyzed the trauma patients of a single level one trauma centre from 2005–2011 and particularly evaluated the correlation between haemoglobin (Hb) and coagulation parameters and the correlation of Hb and parameters indicating tissue perfusion. All patients who were directly admitted from the scene of an accident to the trauma centre had an injury severity score (ISS) > 9, had a complete revised injury severity classification (RISC) and blood samples that were taken in the emergency department (ED) immediately after admission were included. Correlations were tested using the Pearson test (r) with a two-tailed significance level of p < 0.05.

Results

A total of 425 patients met inclusion criteria presenting with a mean age of 43 years, 76 % male gender and mean ISS of 30.4. Significant correlation (p < 0.01) between Hb and prothrombin time (Quick) (r = 0.652), Hb and partial thromboplastin time (PTT) (r = – 0.434), Hb and platelet count (r = 0.501) and Hb and base excess (BE) (0.408) was found. No significant correlation between Hb and lactate was found.

Conclusion

We found a robust correlation of Hb and Quick in a single centre trauma population. These data suggest that especially severely injured trauma patients with persistent bleeding might benefit from an Hb-based algorithm for early correction of coagulation disorders. Further studies with larger trauma populations are required to confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Maegele M, Lefering R, Yucel N et al (2007) Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury 38:298–304

    Article  PubMed  Google Scholar 

  2. Peiniger S, Maegele M (2012) Trauma-associated bleeding in the severely injured. Relevance, risk stratification and current therapy approaches. Unfallchirurg 115:173–183

    Article  CAS  PubMed  Google Scholar 

  3. Waydhas C, Gorlinger K (2009) Coagulation management in multiple trauma. Unfallchirurg 112:942–950

    Article  CAS  PubMed  Google Scholar 

  4. Lier H, Bottiger BW, Hinkelbein J et al (2011) Coagulation management in multiple trauma: a systematic review. Intensive Care Med 37:572–582

    Article  PubMed  Google Scholar 

  5. Brohi K, Cohen MJ, Ganter MT et al (2007) Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg 245:812–818

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hilbert P, Hofman GO, Nieden K zur et al (2012) Coagulation management of trauma patients with unstabile circulation. Establishment of a hemoglobin-oriented standard operating procedure. Anaesthesist 61(8):703–710

    Article  CAS  PubMed  Google Scholar 

  7. Lendemans S, Ruchholtz S (2012) S3 guideline on treatment of polytrauma/severe injuries. Trauma room care. Unfallchirurg 115:14–21

    Article  CAS  PubMed  Google Scholar 

  8. Bruns B, Lindsey M, Rowe K et al (2007) Hemoglobin drops within minutes of injuries and predicts need for an intervention to stop hemorrhage. J Trauma 63:312–315

    Article  CAS  PubMed  Google Scholar 

  9. Knottenbelt JD (1991) Low initial hemoglobin levels in trauma patients: an important indicator of ongoing hemorrhage. J Trauma 31:1396–1399

    Article  CAS  PubMed  Google Scholar 

  10. Theusinger OM, Levy JH (2013) Point of care devices for assessing bleeding and coagulation in the trauma patient. Anesthesiol Clin 31:55–65

    Article  PubMed  Google Scholar 

  11. Bauer F, Bauman G, Gray T et al (2012) Gerinnung im klinischen Alltag. Inderdisziplinäre Gerinnungsgruppe Steiermark – IGS, Graz

  12. Rossaint R, Bouillon B, Cerny V et al (2010) Management of bleeding following major trauma: an updated European guideline. Crit Care 14:R52

    Article  PubMed Central  PubMed  Google Scholar 

  13. Schochl H, Nienaber U, Hofer G et al (2010) Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care 14:R55

    Article  PubMed Central  PubMed  Google Scholar 

  14. Jambor C, Heindl B, Spannagl M et al (2009) Hemostasis management in multiple trauma patients–value of near-patient diagnostic methods. Anasthesiol Intensivmed Notfallmed Schmerzther 44:200–209

    Article  PubMed  Google Scholar 

  15. Riskin DJ, Tsai TC, Riskin L et al (2009) Massive transfusion protocols: the role of aggressive resuscitation versus product ratio in mortality reduction. J Am Coll Surg 209:198–205

    Article  PubMed  Google Scholar 

  16. Hilbert P, Hofman GO, Stuttman R (2013) 16 Monate Erfahrung mit einem Hb-orientierten und Faktorkonzentratbasiertem Gerinnungsmanagement beim Kreislaufinstabilen Polytrauma. Anästh Intensivmed 54:18–19

    Google Scholar 

  17. Raum MR, Nijsten MW, Vogelzang M et al (2009) Emergency trauma score: an instrument for early estimation of trauma severity. Crit Care Med 37:1972–1977

    Article  PubMed  Google Scholar 

  18. Rixen D, Raum M, Bouillon B et al (2001) Predicting the outcome in severe injuries: an analysis of 2069 patients from the trauma register of the German Society of Traumatology (DGU). Unfallchirurg 104:230–239

    Article  CAS  PubMed  Google Scholar 

  19. Yucel N, Lefering R, Maegele M et al (2006) Trauma Associated Severe Hemorrhage (TASH)-score: probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma. J Trauma 60:1228–1236

    Article  PubMed  Google Scholar 

  20. Zander R (2009) Gerinnungsdiagnostik. Der Einfluss von Temperatur und Säure-Basen-Status auf die Gerinnung bzw. Fibrinolyse muss bei der Diagnostik berücksichtigt werden. QualiTest 2009:1–6

    Google Scholar 

  21. Vandromme MJ, Griffin RL, Weinberg JA et al (2010) Lactate is a better predictor than systolic blood pressure for determining blood requirement and mortality: could prehospital measures improve trauma triage? J Am Coll Surg 210:861–869

    Article  PubMed  Google Scholar 

  22. Vandromme MJ, Griffin RL, McGwin G Jr et al (2011) Prospective identification of patients at risk for massive transfusion: an imprecise endeavor. Am Surg 77:155–161

    PubMed  Google Scholar 

  23. Maegele M, Brockamp T, Nienaber U et al (2012) Predictive models and algorithms for the need of transfusion including massive transfusion in severely injured patients. Transfus Med Hemother 39:85–97

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. P. Hilbert, G.O. Hofmann, R. Lefering und M.F. Struck geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hilbert DEAA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilbert, P., Hofmann, G., Lefering, R. et al. Schockraumhämoglobin. Unfallchirurg 118, 601–606 (2015). https://doi.org/10.1007/s00113-013-2522-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-013-2522-y

Schlüsselwörter

Keywords

Navigation