Skip to main content
Log in

Tolerance, suppression and the fetal allograft

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In solid organ transplantation the recipient immune system recognises foreign alloantigens expressed by the graft. This results in an immune attack of the transplanted organ leading to rejection, which can be prevented only by therapeutic immunosuppression. During pregnancy the fetus should also be rejected by the maternal immune system, since it expresses antigens derived from the father. Whilst the immune system retains the ability to respond to foreign antigen, tolerance mechanisms ensure that inappropriate responses against self-antigen are prevented. Maternal immune aggression directed against the fetus is partly inhibited by peripheral tolerance mechanisms that act locally to deplete cells capable of attacking the fetus. Other local mechanisms inhibit the pathways that cause tissue damage after immune activation. Recent studies in mice and humans indicate that the maternal immune system undergoes a more systemic change that promotes materno-fetal tolerance. Naturally occurring regulatory T cells, which are commonly associated with maintaining tolerance to self-antigens, can also suppress maternal allo-responses targeted against the fetus. We review the mechanisms that mediate materno-fetal tolerance, with particular emphasis on changes in regulatory T cell function during pregnancy and discuss their implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CTLA :

Cytotoxic T lymphocyte associated antigen

GITR :

Glucocorticoid-induced tumour necrosis factor receptor family related

HLA :

Human leukocyte antigen

IDO :

Indoleamine 2,3-dioxygenase

IL :

Interleukin

IPEX :

Immune dysregulation, poly-endocrinopathy, enteropathy, X-chromosome linked

NK :

Natural killer

TGF :

Transforming growth factor

References

  1. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  2. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300

    Article  CAS  PubMed  Google Scholar 

  4. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    Article  CAS  PubMed  Google Scholar 

  5. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  CAS  PubMed  Google Scholar 

  6. Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nat Rev Immunol 4:123–132

    Google Scholar 

  7. Mathis D, Benoist C (2004) Back to central tolerance. Immunity 20:509–516

    Article  CAS  PubMed  Google Scholar 

  8. Brent L (1997) The discovery of immunologic tolerance. Hum Immunol 52:75–81

    Google Scholar 

  9. Billington WD (2003) The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to Peter Medawar. J Reprod Immunol 60:1–11

    Google Scholar 

  10. Kamradt T, Mitchison NA (2001) Tolerance and autoimmunity. N Engl J Med 344:655–664

    Article  CAS  PubMed  Google Scholar 

  11. Eisenbarth GS, Gottlieb PA (2004) Autoimmune polyendocrine syndromes. N Engl J Med 350:2068–2079

    Article  CAS  PubMed  Google Scholar 

  12. Walker LS, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2:11–19

    Article  Google Scholar 

  13. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  CAS  PubMed  Google Scholar 

  14. Kriegel MA et al (2004) Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J Exp Med 199:1285–1291

    Article  CAS  PubMed  Google Scholar 

  15. Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18:723–737

    CAS  PubMed  Google Scholar 

  16. Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21:903–914

    CAS  PubMed  Google Scholar 

  17. Gershon RK, Liebhaber SA (1972) The response of T cells to histocompatibility-2 antigens. Dose-response kinetics. J Exp Med 136:112–127

    Article  CAS  PubMed  Google Scholar 

  18. McCullagh PJ (1970) The immunological capacity of lymphocytes from normal donors after their transfer to rats tolerant of sheep erythrocytes. Aust J Exp Biol Med Sci 48:369–379

    CAS  PubMed  Google Scholar 

  19. Baker PJ, et al (1970) Evidence for the existence of two functionally distinct types of cells which regulate the antibody response to type 3 pneumococcal polysaccharide. J Immunol 105:1581–1583

    CAS  PubMed  Google Scholar 

  20. Zembala M, Asherson GL (1973) Depression of the T cell phenomenon of contact sensitivity by T cells from unresponsive mice. Nature 244:227–228

    CAS  PubMed  Google Scholar 

  21. Basten A. et al (1974) Cell-to-cell interaction in the immune response. X. T-cell-dependent suppression in tolerant mice. J Exp Med 140:199–217

    Article  CAS  PubMed  Google Scholar 

  22. Benjamin DC (1977) Suppressor cells in tolerance to HGG: kinetics and cross-suppression in high dose tolerance-absence in low dose tolerance. J Immunol 118:2125–2129

    Google Scholar 

  23. Barthold DR, Kysela S, Steinberg AD (1974) Decline in suppressor T cell function with age in female NZB mice. J Immunol 112:9–16

    Google Scholar 

  24. Weber G, Kolsch E (1973) Transfer of low zone tolerance to normal syngeneic mice by theta-positive cells. Eur J Immunol 3:767–772

    CAS  PubMed  Google Scholar 

  25. Okumura K, Tada T (1973) Suppression of hapten-specific antibody response by carrier-specific T cells. Nat New Biol 245:180–182

    CAS  PubMed  Google Scholar 

  26. Mosier DE, Johnson BM (1975) Ontogeny of mouse lymphocyte function. II. Development of the ability to produce antibody is modulated by T lymphocytes. J Exp Med 141:216–226

    Article  CAS  PubMed  Google Scholar 

  27. Starzinski-Powitz A et al (1976) In vivo sensitization of T cells to hapten-conjugated syngeneic structures of major histocompatibility complex. I. Effect of in vitro culture upon generation of cytotoxic T lymphocytes. Eur J Immunol 6:799–805

    CAS  PubMed  Google Scholar 

  28. Feldmann M et al (1975) Different Ly antigen phenotypes of in vitro induced helper and suppressor cells. Nature 258:614–616

    CAS  PubMed  Google Scholar 

  29. Cantor H, Shen FW, Boyse EA (1976) Separation of helper T cells from suppressor T cells expressing different Ly components. II. Activation by antigen: after immunization, antigen-specific suppressor and helper activities are mediated by distinct T-cell subclasses. J Exp Med 143:1391–1400

    Article  CAS  PubMed  Google Scholar 

  30. Huber B et al (1976) Cell-mediated immunity: delayed-type hypersensitivity and cytotoxic responses are mediated by different T-cell subclasses. J Exp Med 143:1534–1539

    Article  CAS  PubMed  Google Scholar 

  31. Jandinski J et al (1976) Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: suppressor and helper activities are inherent properties of distinct T-cell subclasses. J Exp Med 143:1382–1390

    Article  CAS  PubMed  Google Scholar 

  32. Vadas MA et al (1976) Ly and Ia antigen phenotypes of T cells involved in delayed-type hypersensitivity and in suppression. J Exp Med 144:10–19

    Article  CAS  PubMed  Google Scholar 

  33. Rich RR, Pierce CW (1974) Biological expressions of lymphocyte activation. 3. Suppression of plaque-forming cell responses in vitro by supernatant fluids from concanavalin A-activated spleen cell cultures. J Immunol 112:1360–1368

    Google Scholar 

  34. Kishimoto T, Ishizaka K (1974) Regulation of antibody response in vitro. 8. Multiplicity of soluble factors released from carrier-specific cells. J Immunol 112:1685–1697

    Google Scholar 

  35. Okumura K, Tada T (1974) Regulation of homocytotropic antibody formation in the rat. IX. Further characterization of the antigen-specific inhibitory T cell factor in hapten-specific homocytotropic antibody response. J Immunol 112:783–791

    Google Scholar 

  36. Takemori T, Tada T (1975) Properties of antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. I. In vivo activity and immunochemical characterization. J Exp Med 142:1241–1253

    Article  CAS  PubMed  Google Scholar 

  37. Taussig MJ, Holliman A (1979) Structure of an antigen-specific suppressor factor produced by a hybrid T-cell line. Nature 277:308–310

    CAS  PubMed  Google Scholar 

  38. Murphy DB et al (1976) A new I subregion (I-J) marked by a locus (Ia-4) controlling surface determinants on suppressor T lymphocytes. J Exp Med 144:699–712

    Article  CAS  PubMed  Google Scholar 

  39. Tada T, Taniguchi M, David CS (1976) Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. IV. Special subregion assignment of the gene (s) that codes for the suppressive T-cell factor in the H-2 histocompatibility complex. J Exp Med 144:713–725

    Article  CAS  PubMed  Google Scholar 

  40. Steinmetz M et al (1982) A molecular map of the immune response region from the major histocompatibility complex of the mouse. Nature 300:35–42

    CAS  PubMed  Google Scholar 

  41. Klein J, Figueroa F, Nagy ZA (1983) Genetics of the major histocompatibility complex: the final act. Annu Rev Immunol 1:119–142

    Article  CAS  PubMed  Google Scholar 

  42. Kobori JA et al (1986) Molecular analysis of the hotspot of recombination in the murine major histocompatibility complex. Science 234:173–179

    CAS  PubMed  Google Scholar 

  43. Ptak W et al (1984) Antigen-specific T contrasuppressor factor in cell-mediated immunity: interactions leading to eradication of the tolerant state. J Immunol 133:1124–1130

    Google Scholar 

  44. Dietz MH et al (1981) Antigen- and receptor-driven regulatory mechanisms. VII. H-2-restricted anti-idiotypic suppressor factor from efferent suppressor T cells. J Exp Med 153:450–463

    Article  CAS  PubMed  Google Scholar 

  45. Minami M et al (1981) Analysis of T cell hybridomas. I. Characterization of H-2 and Igh-restricted monoclonal suppressor factors. J Exp Med 154:1390–1402

    Article  CAS  PubMed  Google Scholar 

  46. Asherson GL et al (1984) Equivalence of conventional anti-picryl T suppressor factor in the contact sensitivity system and monoclonal anti-NP TsF3: their final non-specific effect via the T acceptor cell. Immunology 53:491–497

    CAS  PubMed  Google Scholar 

  47. Kronenberg M et al (1985) Rearrangement and transcription of the beta-chain genes of the T-cell antigen receptor in different types of murine lymphocytes. Nature 313:647–653

    CAS  PubMed  Google Scholar 

  48. Hedrick SM et al (1985) Rearrangement and transcription of a T-cell receptor beta-chain gene in different T-cell subsets. Proc Natl Acad Sci U S A 82:531–535

    Google Scholar 

  49. Sakaguchi S, Takahashi T, Nishizuka Y (1982) Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J Exp Med 156:1565–1576

    Article  CAS  PubMed  Google Scholar 

  50. Sakaguchi S, Takahashi T, Nishizuka Y (1982) Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med 156:1577–1586

    Article  CAS  PubMed  Google Scholar 

  51. Sakaguchi S et al (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 161:72–87

    Article  CAS  PubMed  Google Scholar 

  52. Sakaguchi S et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    CAS  PubMed  Google Scholar 

  53. Asano M et al (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396

    Article  CAS  PubMed  Google Scholar 

  54. Powrie F, Mason D (1990) OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med 172:1701–1708

    Article  CAS  PubMed  Google Scholar 

  55. Powrie F et al (1993) Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 5:1461–1471

    CAS  PubMed  Google Scholar 

  56. Powrie F et al (1994) Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 179:589–600

    Article  CAS  PubMed  Google Scholar 

  57. Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296

    Article  CAS  PubMed  Google Scholar 

  58. Thornton AM, Shevach EM (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 164:183–190

    Google Scholar 

  59. Shimizu J et al (2002) Stimulation of CD25(+) CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142

    Google Scholar 

  60. Jordan MS et al (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306

    Google Scholar 

  61. Apostolou I et al (2002) Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756–763

    Google Scholar 

  62. Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199–210

    Google Scholar 

  63. Green EA, Choi Y, Flavell RA (2002) Pancreatic lymph node-derived CD4(+) CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16:183–191

    Article  CAS  PubMed  Google Scholar 

  64. Bystry RS et al (2001) B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2:1126–1132

    Google Scholar 

  65. Read S, Powrie F (2001) CD4(+) regulatory T cells. Curr Opin Immunol 13:644–649

    Google Scholar 

  66. Ernst B et al (1999) The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11:173–181

    Article  CAS  PubMed  Google Scholar 

  67. Barthlott T, Kassiotis G, Stockinger B (2003) T cell regulation as a side effect of homeostasis and competition. J Exp Med 197:451–460

    Article  CAS  PubMed  Google Scholar 

  68. Jameson SC (2002) Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2:547–556

    Google Scholar 

  69. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  70. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Google Scholar 

  71. Khattri R et al (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    Google Scholar 

  72. Belkaid Y et al (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

    Article  CAS  PubMed  Google Scholar 

  73. Gallimore A, Sakaguchi S (2002) Regulation of tumour immunity by CD25+ T cells. Immunology 107:5–9

    Google Scholar 

  74. Bach JF, Bach JF (2003) Regulatory T cells under scrutiny. Nat Rev Immunol 3:189–198

    Google Scholar 

  75. Mauri C et al (2003) Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 197:489–501

    Article  CAS  PubMed  Google Scholar 

  76. Thellin O et al (2000) Tolerance to the foeto-placental ‘graft’: ten ways to support a child for nine months. Curr Opin Immunol 12:731–737

    Google Scholar 

  77. Tafuri A et al (1995) T cell awareness of paternal alloantigens during pregnancy. Science 270:630–633

    CAS  PubMed  Google Scholar 

  78. Aluvihare VR, Kallikourdis M, Betz AG (2004) Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 5:266–271

    Google Scholar 

  79. Munn DH et al (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372

    Article  CAS  PubMed  Google Scholar 

  80. Munn DH. et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  CAS  PubMed  Google Scholar 

  81. Mellor AL et al (2001) Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol 2:64–68

    Google Scholar 

  82. Xu C et al (2000) A critical role for murine complement regulator crry in fetomaternal tolerance. Science 287:498–501

    Article  CAS  PubMed  Google Scholar 

  83. Mao D et al (2003) Negligible role of antibodies and C5 in pregnancy loss associated exclusively with C3-dependent mechanisms through complement alternative pathway. Immunity 19:813–822

    Article  CAS  PubMed  Google Scholar 

  84. Rouas-Freiss N et al (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci USA 94:11520–11525

    Google Scholar 

  85. Makrigiannakis A et al (2001) Corticotropin-releasing hormone promotes blastocyst implantation and early maternal tolerance. Nat Immunol 2:1018–1024

    Google Scholar 

  86. Hunt JS et al (1997) Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J Immunol 158:4122–4128

    Google Scholar 

  87. Piccinni MP et al (1998) Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat Med 4:1020–1024

    Article  CAS  PubMed  Google Scholar 

  88. Erlebacher A et al (2004) Ovarian insufficiency and early pregnancy loss induced by activation of the innate immune system. J Clin Invest 114:39–48

    Article  CAS  PubMed  Google Scholar 

  89. Mattsson R et al (1991) Maintained pregnancy levels of oestrogen afford complete protection from post-partum exacerbation of collagen-induced arthritis. Clin Exp Immunol 85:41–47

    CAS  PubMed  Google Scholar 

  90. Beagley KW, Gockel CM (2003) Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol 38:13–22

    Article  CAS  PubMed  Google Scholar 

  91. Sasaki Y et al (2004) Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 10:347–353

    Article  CAS  PubMed  Google Scholar 

  92. Somerset DA et al (2004) Normal human pregnancy is associated with an elevation in the immune suppressive CD25 CD4 regulatory T-cell subset. Immunology 112:38–43

    Article  CAS  PubMed  Google Scholar 

  93. Heikkinen J et al (2004) Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol 136:373–378

    Article  CAS  PubMed  Google Scholar 

  94. Maloy KJ et al (2003) CD4+CD25+ T (R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 197:111–119

    Article  CAS  PubMed  Google Scholar 

  95. Fallarino F et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212

    Google Scholar 

  96. Baban B et al (2004) Indoleamine 2:3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol 61:67–77

    Article  CAS  PubMed  Google Scholar 

  97. Viglietta V et al (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varuna R. Aluvihare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aluvihare, V.R., Kallikourdis, M. & Betz, A.G. Tolerance, suppression and the fetal allograft. J Mol Med 83, 88–96 (2005). https://doi.org/10.1007/s00109-004-0608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0608-2

Keywords

Navigation