Skip to main content
Log in

Hören und Kognition: neurokognitive Testbatterien in der HNO-Heilkunde

Hearing and cognition: neurocognitive test batteries in otorhinolaryngology

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Hören und Kognition sind eng miteinander verknüpft. Um Sprachverstehen zu ermöglichen, sind kognitive Fähigkeiten insbesondere unter suboptimalen Hörbedingungen von Bedeutung. Umgekehrt deuten Untersuchungen darauf hin, dass bei Vorliegen einer Hörstörung der geistige Abbau schneller voranschreitet als bei Normalhörenden. Ein Hörverlust hat jedoch auch Auswirkungen auf die meist auditiv basierte Kognitionstestung. Mit zunehmendem Alter steigt nicht nur das Risiko für sensorische, sondern auch für kognitive Defizite. Diese finden derzeit in der Hals-Nasen-Ohren-Heilkunde allerdings kaum Berücksichtigung.

Material und Methoden

Dargestellt werden eine Übersicht und Wertung der gängigen deutschsprachigen neurokognitiven Testbatterien für Ältere unter Berücksichtigung der verschiedenen Testmodalitäten und -schwerpunkte.

Ergebnisse

Bislang sind eine Vielzahl neurokognitiver Tests, sowohl in Form von Screeningtests als auch in Form von ausführlichen Testverfahren, v. a. im Bereich der Demenzdiagnostik verfügbar. Sensorischen Defiziten wird jedoch bislang in der Testdurchführung wie auch in der Auswertung und Interpretation derselben kaum Beachtung geschenkt. Normierte Daten für Schwerhörige fehlen derzeit vollständig.

Schlussfolgerung

Mit Blick auf die demografische Entwicklung und die Bias von Hören und Kognition sollte künftig eine Überprüfung der neurokognitiven Fähigkeiten im Rahmen eines Basisassessments auch Eingang in die allgemeine klinische HNO-Heilkunde finden. Demgegenüber können ausführliche neuropsychologische Testverfahren wissenschaftlichen Fragestellungen oder der Hörrehabilitation vorbehalten bleiben.

Abstract

Background

Hearing and cognition are closely related to each other. Particularly in suboptimal listening situations, cognitive abilities become important to enable speech comprehension. Besides, studies have indicated that hearing impairment is associated with a more rapid mental decline compared to persons with normal hearing. However, hearing loss also has an impact on neurocognitive testing, which is generally based on auditive stimuli. With increasing age, the risk of sensory but also of cognitive impairments increases. So far this comorbidity receives little consideration in otorhinolaryngology.

Materials and methods

The paper presents an overview and evaluation of widely used German neurocognitive test batteries for older patients, with regard to the different test modalities and their focus.

Results

A multitude of different neurocognitive screening tests and detailed test batteries are available, particularly in the field of dementia. So far, sensory deficits have not been considered in neurocognitive testing, neither concerning application nor interpretation. Normative data adapted to the hearing impaired are still missing.

Conclusion

With regard to demographic changes and the well-known bias between hearing and cognition, screening of neurocognitive functions should be implemented in basic otorhinolaryngologic diagnostics. More comprehensive test batteries might be useful for research purposes or speech therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Stenfelt S, Rönnberg J (2009) The signal-cognition interface: Interactions between degraded auditory signals and cognitive processes. Scand J Psychol 50(5):385–393

    PubMed  Google Scholar 

  2. Rönnberg J, Lunner T, Zekveld A et al (2013) The Ease of Language Understanding (ELU) model: Theoretical, empirical, and clinical advances. Front Syst Neurosci 7:31

    PubMed  PubMed Central  Google Scholar 

  3. Baddeley AD, Hitch G (1974) Working memory. In: Psychology of learning and motivation Bd. 8. Academic press, S 47–89

  4. Nyberg L, Lövdén M, Riklund K et al (2012) Memory aging and brain maintenance. Trends Cogn Sci 16(5):292–305

    PubMed  Google Scholar 

  5. Wingfield A (2016) Evolution of models of working memory and cognitive resources. Ear Hear 37:35S–43S

    PubMed  Google Scholar 

  6. Kaandorp MW, Smits C, Merkus P et al (2017) Lexical-access ability and cognitive predictors of speech recognition in noise in adult cochlear implant users. Trends Hear 21:2331216517743887

    PubMed  PubMed Central  Google Scholar 

  7. Moberly AC, Houston DM, Harris MS et al (2017) Verbal working memory and inhibition—concentration in adults with cochlear implants. Laryngoscope investigative otolaryngology 2(5):254–261

    PubMed  PubMed Central  Google Scholar 

  8. Moberly AC, Bates C, Harris MS et al (2016) The enigma of poor performance by adults with cochlear implants. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 37(10):1522. https://doi.org/10.1097/MAO.0000000000001211

    Article  Google Scholar 

  9. Souza P, Arehart K, Neher T (2015) Working memory and hearing aid processing: Literature findings, future directions, and clinical applications. Front Psychol 6:1894

    PubMed  PubMed Central  Google Scholar 

  10. Fukuse T, Satoda N, Hijiya K et al (2005) Importance of a comprehensive geriatric assessment in prediction of complications following thoracic surgery in elderly patients. Chest 127(3):886–891

    PubMed  Google Scholar 

  11. Meister H, Schreitmüller S, Ortmann M et al (2016) Effects of hearing loss and cognitive load on speech recognition with competing talkers. Front Psychol 7:301

    PubMed  PubMed Central  Google Scholar 

  12. Nuesse T, Steenken R, Neher T et al (2018) Exploring the link between cognitive abilities and speech recognition in the elderly under different listening conditions. Front Psychol. https://doi.org/10.3389/fpsyg.2018.00678

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bidelman GM, Howell M (2016) Functional changes in inter-and intra-hemispheric cortical processing underlying degraded speech perception. Neuroimage 124:581–590

    PubMed  Google Scholar 

  14. Ren F, Ma W, Li M et al (2018) Gray matter atrophy is associated with cognitive impairment in patients with presbycusis: A comprehensive morphometric study. Front Neurosci 12:744

    PubMed  PubMed Central  Google Scholar 

  15. Tun PA, Williams VA, Small BJ et al (2012) The effects of aging on auditory processing and cognition. Am J Audiol 21(2):344–350

    PubMed  Google Scholar 

  16. Wingfield A, Tun PA, McCoy SL (2005) Hearing loss in older adulthood: What it is and how it interacts with cognitive performance. Curr Direct Psychol Sci 14(3):144–148

    Google Scholar 

  17. Mick P, Kawachi I, Lin FR (2014) The association between hearing loss and social isolation in older adults. Otolaryngol Neck Surg 150(3):378–384

    Google Scholar 

  18. Peelle JE (2018) Listening effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear Hearing 39(2):204–214. https://doi.org/10.1097/AUD.0000000000000494

    Article  PubMed  Google Scholar 

  19. Bennett DA, Schneider JA, Tang Y et al (2006) The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: A longitudinal cohort study. Lancet Neurol 5(5):406–412

    PubMed  Google Scholar 

  20. Que M, Jiang X, Yi C et al (2018) Language and sensory neural plasticity in the superior temporal cortex of the deaf. Neural Plast 2018:9456891. https://doi.org/10.1155/2018/9456891

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lin FR, Metter EJ, O’Brien RJ et al (2011) Hearing loss and incident dementia. Arch Neurol 68(2):214–220

    PubMed  PubMed Central  Google Scholar 

  22. Loughrey DG, Kelly ME, Kelley GA et al (2018) Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: A systematic review and meta-analysis. JAMA Otolaryngology-Head Neck Surg 144(2):115–126

    Google Scholar 

  23. Austin M‑P, Mitchell P, Goodwin GM (2001) Cognitive deficits in depression: Possible implications for functional neuropathology. Br J Psychiatry 178(3):200–206

    CAS  PubMed  Google Scholar 

  24. Panza F, Frisardi V, Capurso C et al (2010) Late-life depression, mild cognitive impairment, and dementia: Possible continuum? Am J Geriatr Psychiatry 18(2):98–116

    PubMed  Google Scholar 

  25. Rock PL, Roiser JP, Riedel WJ et al (2014) Cognitive impairment in depression: A systematic review and meta-analysis. Psychol Med 44(10):2029–2040

    CAS  PubMed  Google Scholar 

  26. Richards DA, Hill JJ, Gask L et al (2013) Clinical effectiveness of collaborative care for depression in UK primary care (CADET): Cluster randomised controlled trial. BMJ 4913:347

    Google Scholar 

  27. Ihl R, Grass-Kapanke B, Lahrem P et al (2000) Development and validation of a test for early diagnosis of dementia with differentiation from depression (TFDD). Fortschritte der Neurologie. Psychiatrie 68(9):413–422

    CAS  Google Scholar 

  28. Yesavage JA, Brink TL, Rose TL et al (1982) Development and validation of a geriatric depression screening scale: A preliminary report. J Psychiatr Res 17(1):37–49

    PubMed  Google Scholar 

  29. Anstey KJ, Low L‑F (2004) Normal cognitive changes in aging. Aust Fam Physician 33(10):783

    PubMed  Google Scholar 

  30. Park DC, Gutchess AH (2000) Cognitive aging and everyday life. In: Park D, Schwarz N (Hrsg) Cognitive aging, a primer, Psychology Press, Philadelphia, S 2017

  31. Ziegler U, Doblhammer G (2009) Prävalenz und Inzidenz von Demenz in Deutschland – Eine Studie auf Basis von Daten der gesetzlichen Krankenversicherungen von 2002. Gesundheitswesen 71(05):281–290

    CAS  PubMed  Google Scholar 

  32. Livingston G, Sommerlad A, Orgeta V et al (2017) Dementia prevention, intervention, and care. Lancet 390(10113):2673–2734

    PubMed  Google Scholar 

  33. Adogwa O, Elsamadicy AA, Vuong VD et al (2018) Association between baseline cognitive impairment and postoperative delirium in elderly patients undergoing surgery for adult spinal deformity. J Neurosurg Spine 28(1):103–108

    PubMed  Google Scholar 

  34. Mokutani Y, Mizushima T, Yamasaki M et al (2016) Prediction of postoperative complications following elective surgery in elderly patients with colorectal cancer using the comprehensive geriatric assessment. Dig Surg 33(6):470–477

    PubMed  Google Scholar 

  35. Reynish EL, Hapca SM, de Souza N et al (2017) Epidemiology and outcomes of people with dementia, delirium, and unspecified cognitive impairment in the general hospital: Prospective cohort study of 10,014 admissions. BMC Med 15(1):140

    PubMed  PubMed Central  Google Scholar 

  36. Knopke S, Olze H (2018) Hörrehabilitation mithilfe von Cochleaimplantaten und kognitive Fähigkeiten. HNO 66(5):364–368

    CAS  PubMed  Google Scholar 

  37. Mosnier I, Bebear J‑P, Marx M et al (2015) Improvement of cognitive function after cochlear implantation in elderly patients. JAMA Otolaryngology-Head Neck Surg 141(5):442–450

    Google Scholar 

  38. Carroll R, Meis M, Schulte M et al (2015) Development of a German reading span test with dual task design for application in cognitive hearing research. Int J Audiol 54(2):136–141

    PubMed  Google Scholar 

  39. Völter C, Götze L, Dazert S et al (2018) Can cochlear implantation improve neurocognition in the aging population? CIA 13:701

    Google Scholar 

  40. Heinrich A, Henshaw H, Ferguson MA (2015) The relationship of speech intelligibility with hearing sensitivity, cognition, and perceived hearing difficulties varies for different speech perception tests. Front Psychol 6:782

    PubMed  PubMed Central  Google Scholar 

  41. Meister H (2017) Sprachaudiometrie, Sprachwahrnehmung und kognitive Funktionen. HNO 65(3):189–194

    CAS  PubMed  Google Scholar 

  42. Uslar VN, Carroll R, Hanke M et al (2013) Development and evaluation of a linguistically and audiologically controlled sentence intelligibility test. J Acoust Soc Am 134(4):3039–3056

    PubMed  Google Scholar 

  43. Sheehan B (2012) Assessment scales in dementia. Ther Adv Neurol Disord 5(6):349–358

    PubMed  PubMed Central  Google Scholar 

  44. Janssen J, Koekkoek PS, van Charante EPM et al (2017) How to choose the most appropriate cognitive test to evaluate cognitive complaints in primary care. BMC Fam Pract 18(1):101

    PubMed  PubMed Central  Google Scholar 

  45. Morris JC, Heyman A, Mohs RC et al (1989) The consortium to establish a registry for Alzheimer’s disease (CERAD): I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39(9):1159–1165

    CAS  PubMed  Google Scholar 

  46. Lepach AC, Petermann F (2012) Gedächtnisdiagnostik mit der Wechsler Memory Scale-Fourth. Ed Z Neuropsychol 23:123–132. https://doi.org/10.1024/1016-264X/a000070

    Article  Google Scholar 

  47. Rosen W, Mohs R, Davis K (1984) Alzheimer’s Disease Assessment Scale—Cognitive and Non-Cognitive Sections (ADAS-Cog, ADAS Non-Cog). J Psychiatry 141:1356–1364

    CAS  Google Scholar 

  48. Graham DP, Cully JA, Snow AL et al (2004) The Alzheimer’s Disease Assessment Scale-Cognitive subscale: Normative data for older adult controls. Alzheimer Dis Assoc Disord 18(4):236–240

    PubMed  Google Scholar 

  49. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    CAS  PubMed  Google Scholar 

  50. Creavin ST, Wisniewski S, Noel-Storr AH et al (2016) Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011145.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kalbe E, Kessler J, Calabrese P et al (2004) DemTect: A new, sensitive cognitive screening test to support the diagnosis of mild cognitive impairment and early dementia. Int J Geriat Psychiatry 19(2):136–143

    CAS  Google Scholar 

  52. Kessler J, Fengler S, Kaesberg S et al (2014) DemTect 40− und DemTect 80+: Neue Auswertungsroutinen für diese Altersgruppen. Fortschritte der Neurologie. Psychiatrie 82(11):640–645

    CAS  Google Scholar 

  53. Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699

    PubMed  Google Scholar 

  54. Bartusch S, Zipper S (2004) Montreal Cognitive Assessment (MoCA). www.mocatest.org. Zugegriffen: 15.11.2012

  55. Thomann AE, Goettel N, Monsch RJ et al (2018) The montreal cognitive assessment: Normative data from a german-speaking cohort and comparison with international normative samples. J Alzheimer’s Diseas 64(2):643–655

    Google Scholar 

  56. Shulman KI (2000) Clock-drawing: Is it the ideal cognitive screening test? Int J Geriat Psychiatry 15(6):548–561

    CAS  Google Scholar 

  57. Palsetia D, Rao GP, Tiwari SC et al (2018) The clock drawing test versus mini-mental status examination as a screening tool for dementia: A clinical comparison. Indian J Psychol Med 40(1):1

    PubMed  PubMed Central  Google Scholar 

  58. Borson S, Scanlan J, Brush M et al (2000) The mini-cog: A cognitive ‘vital signs’ measure for dementia screening in multi-lingual elderly. Int J Geriat Psychiatry 15(11):1021–1027

    CAS  Google Scholar 

  59. Seitz DP, Chan CCH, Newton HT et al (2018) Mini-Cog for the diagnosis of Alzheimer’s disease dementia and other dementias within a primary care setting. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011415.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mathuranath PS, Nestor PJ, Berrios GE et al (2000) A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology 55(11):1613–1620

    CAS  PubMed  Google Scholar 

  61. Bruno D, Vignaga SS (2019) Addenbrooke’s cognitive examination iii in the diagnosis of dementia: A critical review. NDT 15:441

    Google Scholar 

  62. Alexopoulos P, Ebert A, Richter-Schmidinger T et al (2010) Validation of the German revised Addenbrooke’s cognitive examination for detecting mild cognitive impairment, mild dementia in Alzheimer’s disease and frontotemporal lobar degeneration. Dement Geriatr Cogn Disord 29(5):448–456

    CAS  PubMed  Google Scholar 

  63. Kessler J, Sener S, Kalbe E et al (2005) TRAKULA: Transkulturelles Assessment mentaler Leistungen bei türkischen Mitbürgern. Akt Neurol 32(P309):4

    Google Scholar 

  64. Kessler J, Ozankan S, Baller G, Kalbe E (2011) EASY: Ein nonverbales, kulturfreies Screeninginstrument zur Erfassung kognitiver Beeinträchtigungen. Novartis, Nürnberg

    Google Scholar 

  65. Jorm AF (2004) The Informant Questionnaire on cognitive decline in the elderly (IQCODE): A review. Int Psychogeriatr 16(3):275–293

    PubMed  Google Scholar 

  66. Dupuis K, Pichora-Fuller MK, Chasteen AL et al (2015) Effects of hearing and vision impairments on the Montreal Cognitive Assessment. Aging Neuropsychol Cogn 22(4):413–437

    Google Scholar 

  67. Lim MYL, Loo JHY (2018) Screening an elderly hearing impaired population for mild cognitive impairment using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Int J Geriatr Psychiatry 33(7):972–979

    PubMed  Google Scholar 

  68. Jorgensen L, Palmer C, Fischer G (2014) Evaluation of hearing status at the time of dementia diagnosis. Audiol Today 26(1):38–32

    Google Scholar 

  69. Toner CK, Reese BE, Neargarder S et al (2012) Vision-fair neuropsychological assessment in normal aging, Parkinson’s disease and Alzheimer’s disease. Psychol Aging 27(3):785

    PubMed  Google Scholar 

  70. McCoy SL, Tun PA, Cox LC et al (2005) Hearing loss and perceptual effort: Downstream effects on older adults’ memory for speech. Q J Exp Psychol Sect A 58(1):22–33

    Google Scholar 

  71. Schneider BA, Pichora-Fuller K, Daneman M (2010) Effects of senescent changes in audition and cognition on spoken language comprehension. In: The aging auditory system. Springer, New York, S 167–210. https://doi.org/10.1007/978-1-4419-0993-0_7

    Book  Google Scholar 

  72. Wong CG, Rapport LJ, Billings BA et al (2019) Hearing loss and verbal memory assessment among older adults. Neuropsychology 33(1):47

    PubMed  Google Scholar 

  73. Wild K, Howieson D, Webbe F et al (2008) Status of computerized cognitive testing in aging: A systematic review. Alzheimer’s Dementia 4(6):428–437

    PubMed  Google Scholar 

  74. Völter C, Götze L, Falkenstein M et al (2018) Computerbasierte Testung neurokognitiver Aspekte im Rahmen der audiologischen Diagnostik. Laryngorhinootologie 97(04):246–254

    PubMed  Google Scholar 

  75. Collerton J, Collerton D, Arai Y et al (2007) A comparison of computerized and pencil- and paper tasks in assessing cognitive function in community-dwelling older people in the Newcastle 85+ Pilot Study. J Am Geriatr Soc 55(10):1630–1635

    PubMed  Google Scholar 

  76. Fliessbach K, Hoppe C, Schlegel U et al (2006) NeuroCogFX-eine computergestützte neuropsychologische Testbatterie für Verlaufsuntersuchungen bei neurologischen Erkrankungen. Fortschritte der Neurologie. Psychiatrie 74(11):643–650

    CAS  Google Scholar 

  77. Robbins TW, James M, Owen AM et al (1994) Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers. Dement Geriatr Cogn Disord 5(5):266–281

    CAS  Google Scholar 

  78. Falkenstein M, Hoormann J, Hohnsbein J (1999) ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol 101(2–3):267–291

    CAS  Google Scholar 

  79. Völter C, Götze L, Falkenstein M et al (2017) Application of a computer-based neurocognitive assessment battery in the elderly with and without hearing loss. CIA 12:1681

    Google Scholar 

  80. Wild-Wall N, Falkenstein M, Gajewski PD (2011) Age-related differences in working memory performance in a 2-back task. Front Psychology 2:186

    Google Scholar 

  81. Brüne-Cohrs U (2019) (unpublished data)

    Google Scholar 

  82. Völter C (2019) (unpublished data)

    Google Scholar 

  83. Randolph C, Tierney MC, Mohr E et al (1998) The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. J Clin Exp Neuropsychol 20(3):310–319

    CAS  PubMed  Google Scholar 

  84. Claes AJ, Mertens G, Gilles A et al (2016) The repeatable battery for the assessment of neuropsychological status for hearing impaired individuals (RBANS-H) before and after cochlear implantation: A protocol for a prospective, longitudinal cohort study. Front Neurosci 10:512

    PubMed  PubMed Central  Google Scholar 

  85. Lin VYW, Chung J, Callahan BL et al (2017) Development of cognitive screening test for the severely hearing impaired: Hearing-impaired M o CA. Laryngoscope 127:4–S11

    Google Scholar 

  86. Scheffels JF, Kräling H, Kalbe E et al (2018) Konversionen von kognitiven Screenings. Nervenarzt 89(12):1371–1377

    CAS  PubMed  Google Scholar 

  87. Shah A, Phongsathorn V, Bielawska C et al (1996) Screening for depression among geriatric inpatients with short versions of the Geriatric Depression Scale. Int J Geriat Psychiatry 11(10):915–918

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Völter.

Ethics declarations

Interessenkonflikt

C. Völter, L. Götze, U. Bruene-Cohrs, S. Dazert und J.P. Thomas geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Völter, C., Götze, L., Bruene-Cohrs, U. et al. Hören und Kognition: neurokognitive Testbatterien in der HNO-Heilkunde. HNO 68, 155–163 (2020). https://doi.org/10.1007/s00106-019-00762-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-019-00762-7

Schlüsselwörter

Keywords

Navigation