Skip to main content
Log in

Prävention von Infektionen, die von Gefäßkathetern ausgehen

Teil 1 – Nichtgetunnelte zentralvenöse Katheter Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut

  • Empfehlungen
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

An Erratum to this article was published on 21 March 2018

This article has been updated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Change history

  • 21 March 2018

    Erratum zu:

    Bundesgesundheitsbl 2017 60:171–206

    https://doi.org/10.1007/s00103-016-2487-4

    Im Kapitel 3.2. Maßnahmen bei Anlage eines ZVK (maximale Barrieremaßnahmen und Hautantiseptik) heißt es:

    „Die Kommission empfiehlt:

    • Für die Hautantiseptik vor Anlage eines ZVK wird die Kombination eines …

    Für die Hautantiseptik vor Anlage eines ZVK wird die Kombination eines …

4. Literatur

  1. Smith RN, Nolan JP (2013) Central venous catheters. BMJ 347:f6570

    Article  PubMed  Google Scholar 

  2. Zingg W, Pittet D (2009) Peripheral venous catheters: an under-evaluated problem. Int J Antimicrob Agents 34(Suppl 4):S38–42

    Article  CAS  PubMed  Google Scholar 

  3. Safdar N, O'Horo JC, Maki DG (2013) Arterial catheter-related bloodstream infection: incidence, pathogenesis, risk factors and prevention. J Hosp Infect 85(3):189–195

    Article  CAS  PubMed  Google Scholar 

  4. Yokoe DS, Classen D (2008) Improving patient safety through infection control: A new healthcare imperative. Infect Control Hosp Epidemiol 29(Suppl. 1):S3–S11

    Article  PubMed  Google Scholar 

  5. Loveday HP, Wilson JA, Pratt RJ et al (2014) epic3: national evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. J Hosp Infect 86(Suppl 1):S1–S70

    Article  PubMed  Google Scholar 

  6. Berenholtz SM, Lubomski LH, Weeks K et al (2014) Eliminating central line-associated bloodstream infections: a national patient safety imperative. Infect Control Hosp Epidemiol 35(1):56–62

    Article  PubMed  Google Scholar 

  7. Safdar N, Fine JP, Maki DG (2005) Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med 142(6):451–466

    Article  PubMed  Google Scholar 

  8. Sherertz RJ, Heard SO, Raad II (1997) Diagnosis of triple-lumen catheter infection: comparison of roll plate, sonication, and flushing methodologies. J Clin Microbiol 35(3):641–646

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Blot F, Nitenberg G, Chachaty E et al (1999) Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 354(9184):1071–1077

    Article  CAS  PubMed  Google Scholar 

  10. Raad I, Hanna HA, Alakech B, Chatzinikolaou I, Johnson MM, Tarrand J (2004) Differential time to positivity: a useful method for diagnosing catheter-related bloodstream infections. Ann Intern Med 140(1):18–25

    Article  PubMed  Google Scholar 

  11. Bowen A, Carapetis J (2011) Advances in the diagnosis and management of central venous access device infections in children. Adv Exp Med Biol 697:91–106

    Article  PubMed  Google Scholar 

  12. Crnich CJ, Maki DG (2002) The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin Infect Dis 34(9):1232–1242

    Article  PubMed  Google Scholar 

  13. Safdar N, Maki DG (2004) The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med 30(1):62–67

    Article  PubMed  Google Scholar 

  14. Maki DG, Kluger DM, Crnich CJ (2006) The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 81(9):1159–1171

    Article  PubMed  Google Scholar 

  15. Hu KK, Lipsky BA, Veenstra DL, Saint S (2004) Using maximal sterile barriers to prevent central venous catheter-related infection: a systematic evidence-based review. Am J Infect Control 32(3):142–146

    Article  PubMed  Google Scholar 

  16. Burrell AR, McLaws ML, Murgo M, Calabria E, Pantle AC, Herkes R (2011) Aseptic insertion of central venous lines to reduce bacteraemia. Med J Aust 194(11):583–587

    PubMed  Google Scholar 

  17. Small H, Adams D, Casey AL, Crosby CT, Lambert PA, Elliott T (2008) Efficacy of adding 2 % (w/v) Chlorhexidine Gluconate to 70 % (v/v) isopropyl alcohol for skin disinfection prior to peripheral venous cannulation. Infect Control Hosp Epidemiol 29(10):963–965

    Article  PubMed  Google Scholar 

  18. Boyd S, Aggarwal I, Davey P, Logan M, Nathwani D (2011) Peripheral intravenous catheters: the road to quality improvement and safer patient care. J Hosp Infect 77(1):37–41

    Article  CAS  PubMed  Google Scholar 

  19. Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S (2002) Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med 136(11):792–801

    Article  CAS  PubMed  Google Scholar 

  20. Sawyer M, Weeks K, Goeschel CA et al (2010) Using evidence, rigorous measurement, and collaboration to eliminate central catheter-associated bloodstream infections. Crit Care Med 38(8 Suppl):S292–S298

    Article  PubMed  Google Scholar 

  21. Zingg W, Imhof A, Maggiorini M, Stocker R, Keller E, Ruef C (2009) Impact of a prevention strategy targeting hand hygiene and catheter care on the incidence of catheter-related bloodstream infections. Crit Care Med 37(7):2167–2173

    Article  PubMed  Google Scholar 

  22. Pittet D, Hugonnet S, Harbarth S et al (2000) Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection Control Programme. Lancet 356(9238):1307–1312

    Article  CAS  PubMed  Google Scholar 

  23. White CM, Statile AM, Conway PH et al (2012) Utilizing improvement science methods to improve physician compliance with proper hand hygiene. Pediatrics 129(4):e1042–e1050

    Article  PubMed  Google Scholar 

  24. Linam WM, Margolis PA, Atherton H, Connelly BL (2011) Quality-improvement initiative sustains improvement in pediatric health care worker hand hygiene. Pediatrics 128(3):e689–e698

    PubMed  Google Scholar 

  25. Austin PD, Elia M (2009) A systematic review and meta-analysis of the risk of microbial contamination of aseptically prepared doses in different environments. J Pharm Pharm Sci 12(2):233–242

    Article  CAS  PubMed  Google Scholar 

  26. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2011) Anforderungen an die Hygiene bei Injektionen und Punktionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut (RKI). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 54(9/10):1135–1144

    Google Scholar 

  27. Douce RW, Zurita J, Sanchez O, Cardenas Aldaz P (2008) Investigation of an outbreak of central venous catheter-associated bloodstream infection due to contaminated water. Infect Control Hosp Epidemiol 29(4):364–366

    Article  PubMed  Google Scholar 

  28. Vonberg RP, Gastmeier P (2007) Hospital-acquired infections related to contaminated substances. J Hosp Infect 65(1):15–23

    Article  PubMed  Google Scholar 

  29. Stucki C, Sautter AM, Favet J, Bonnabry P (2009) Microbial contamination of syringes during preparation: the direct influence of environmental cleanliness and risk manipulations on end-product quality. Am J Health Syst Pharm 66(22):2032–2036

    Article  PubMed  Google Scholar 

  30. Lorente L, Jimenez A, Naranjo C et al (2010) Higher incidence of catheter-related bacteremia in jugular site with tracheostomy than in femoral site. Infect Control Hosp Epidemiol 31(3):311–313

    Article  PubMed  Google Scholar 

  31. Timsit JF, Bouadma L, Ruckly S et al (2012) Dressing disruption is a major risk factor for catheter-related infections. Crit Care Med 40(6):1707–1714

    Article  PubMed  Google Scholar 

  32. Tietz A, Frei R, Dangel M et al (2005) Octenidine hydrochloride for the care of central venous catheter insertion sites in severely immunocompromised patients. Infect Control Hosp Epidemiol 26(8):703–707

    Article  PubMed  Google Scholar 

  33. Dettenkofer M, Wilson C, Gratwohl A et al (2010) Skin disinfection with octenidine dihydrochloride for central venous catheter site care: a double-blind, randomized, controlled trial. Clin Microbiol Infect 16(6):600–606

    Article  CAS  PubMed  Google Scholar 

  34. Dettenkofer M, Jonas D, Wiechmann C et al (2002) Effect of skin disinfection with octenidine dihydrochloride on insertion site colonization of intravascular catheters. Infection 30(5):282–285

    Article  CAS  PubMed  Google Scholar 

  35. Luft D, Schmoor C, Wilson C et al (2010) Central venous catheter-associated bloodstream infection and colonisation of insertion site and catheter tip. What are the rates and risk factors in haematology patients? Ann Hematol 89(12):1265–1275

    Article  PubMed  Google Scholar 

  36. Timsit JF, Schwebel C, Bouadma L et al (2009) Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA 301(12):1231–1241

    Article  CAS  PubMed  Google Scholar 

  37. Timsit JF, Mimoz O, Mourvillier B et al (2012) Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med 186(12):1272–1278

    Article  CAS  PubMed  Google Scholar 

  38. Ruschulte H, Franke M, Gastmeier P et al (2009) Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: a randomized controlled trial. Ann Hematol 88(3):267–272

    Article  CAS  PubMed  Google Scholar 

  39. Scheithauer S, Lewalter K, Schroder J et al (2014) Reduction of central venous line-associated bloodstream infection rates by using a chlorhexidine-containing dressing. Infection 42(1):155–159

    Article  CAS  PubMed  Google Scholar 

  40. Ivy DD, Calderbank M, Wagner BD et al (2009) Closed-hub systems with protected connections and the reduction of risk of catheter-related bloodstream infection in pediatric patients receiving intravenous prostanoid therapy for pulmonary hypertension. Infect Control Hosp Epidemiol 30(9):823–829

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mermel LA (2011) What is the predominant source of intravascular catheter infections? Clin Infect Dis 52(2):211–212

    Article  PubMed  Google Scholar 

  42. Nishikawa K, Takasu A, Morita K, Tsumori H, Sakamoto T (2010) Deposits on the intraluminal surface and bacterial growth in central venous catheters. J Hosp Infect 75(1):19–22

    Article  CAS  PubMed  Google Scholar 

  43. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kubiak DW, Gilmore ET, Buckley MW, Lynch R, Marty FM, Koo S (2014) Adjunctive management of central line-associated bloodstream infections with 70 % ethanol-lock therapy. J Antimicrob Chemother 69(6):1665–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vergidis P, Patel R (2012) Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clin North Am 26(1):173–186

    Article  PubMed  PubMed Central  Google Scholar 

  46. Donlan RM (2011) Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clin Infect Dis 52(8):1038–1045

    Article  PubMed  Google Scholar 

  47. Balestrino D, Souweine B, Charbonnel N et al (2009) Eradication of microorganisms embedded in biofilm by an ethanol-based catheter lock solution. Nephrol Dial Transplant 24(10):3204–3209

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Gowardman J, Morrison M, Krause L, Playford EG, Rickard CM (2014) Molecular investigation of bacterial communities on intravascular catheters: no longer just Staphylococcus. Eur J Clin Microbiol Infect Dis 33(7):1189–1198

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Morrison M, Nimmo GR et al (2013) Molecular investigation of bacterial communities on the inner and outer surfaces of peripheral venous catheters. Eur J Clin Microbiol Infect Dis 32(8):1083–1090

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Sriprakash KS, McMillan D, Gowardman JR, Patel B, Rickard CM (2010) Microbiological pattern of arterial catheters in the intensive care unit. BMC Microbiol 10:266

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ekkelenkamp MB, van der Bruggen T, van de Vijver DA, Wolfs TF, Bonten MJ (2008) Bacteremic complications of intravascular catheters colonized with Staphylococcus aureus. Clin Infect Dis 46(1):114–118

    Article  PubMed  Google Scholar 

  52. Hetem DJ, Woerdeman PA, Bonten MJ, Ekkelenkamp MB (2010) Relationship between bacterial colonization of external cerebrospinal fluid drains and secondary meningitis: a retrospective analysis of an 8-year period. J Neurosurg 113(6):1309–1313

    Article  PubMed  Google Scholar 

  53. Hetem DJ, de Ruiter SC, Buiting AG et al (2011) Preventing Staphylococcus aureus bacteremia and sepsis in patients with Staphylococcus aureus colonization of intravascular catheters: a retrospective multicenter study and meta-analysis. Medicine (Baltimore) 90(4):284–288

    Article  Google Scholar 

  54. Salgado CD (2008) The risk of developing a vancomycin-resistant Enterococcus bloodstream infection for colonized patients. Am J Infect Control 36(10):175.e5–175.e8

    Article  Google Scholar 

  55. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2002) Prävention Gefäßkatheter-assoziierter Infektionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention am Robert Koch-Institut. Bundesgesundheitsblatt 25(11):907–924

    Google Scholar 

  56. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2007) Empfehlung zur Prävention nosokomialer Infektionen bei neonatologischen Intensivpflegepatienten mit einem Geburtsgewicht unter 1500 g. Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut. Bundesgesundheitsblatt 50(10):1265–1303

    Article  Google Scholar 

  57. Hentrich M, Schalk E, Schmidt-Hieber M et al (2014) Central venous catheter-related infections in hematology and oncology: 2012 updated guidelines on diagnosis, management and prevention by the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology. Ann Oncol 25(5):936–947

    Article  CAS  PubMed  Google Scholar 

  58. Simon A, Graf N, Furtwangler R (2013) Results of a multicentre survey evaluating clinical practice of port and broviac management in paediatric oncology. Klin Padiatr 225(3):145–151

    Article  CAS  PubMed  Google Scholar 

  59. Simon A, Beutel K, Trautmann M, Greiner J, Graf N (2013) Evidenzbasierte Empfehlungen zur Anwendung dauerhaft implantierter, zentralvenöser Zugänge in der pädiatrischen Onkologie, 4. Aufl. mhp, Wiesbaden

    Google Scholar 

  60. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2010) Die Kategorien in der Richtlinie für Krankenhaushygiene und Infektionsprävention. Aktualisierung der Definitionen Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention. Bundesgesundheitsblatt 53(7):754–756

    Article  Google Scholar 

  61. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2012) Anforderungen an die Hygiene bei der Aufbereitung von Medizinprodukten. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI) und des Bundesinstitutes für Arzneimittel und Medizinprodukte (BfArM). Bundesgesundheitsblatt 55(10):1244–1310

    Article  Google Scholar 

  62. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2016) Händehygiene in Einrichtungen des Gesundheitswesens. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI). Bundesgesundheitsblatt 59(9):1189–1220

    Article  Google Scholar 

  63. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2009) Personelle und organisatorische Voraussetzungen zur Prävention nosokomialer Infektionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention. Bundesgesundheitsblatt 53(9):951–962

    Google Scholar 

  64. Dixon-Woods M, Bosk CL, Aveling EL, Goeschel CA, Pronovost PJ (2011) Explaining Michigan: developing an ex post theory of a quality improvement program. Milbank Q 89(2):167–205

    Article  PubMed  PubMed Central  Google Scholar 

  65. Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ (2011) Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol 32(2):101–114

    Article  PubMed  Google Scholar 

  66. Marschall J, Mermel LA, Fakih M et al (2014) Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35(7):753–771

    Article  PubMed  Google Scholar 

  67. O'Grady NP, Alexander M, Burns LA et al (2011) Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 39(4 Suppl 1):S1–S34

    Article  PubMed  Google Scholar 

  68. Berenholtz SM, Pronovost PJ, Lipsett PA et al (2004) Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med 32(10):2014–2020

    Article  PubMed  Google Scholar 

  69. Sagana R, Hyzy RC (2013) Achieving zero central line-associated bloodstream infection rates in your intensive care unit. Crit Care Clin 29(1):1–9

    Article  PubMed  Google Scholar 

  70. Khalid I, Al Salmi H, Qushmaq I, Al Hroub M, Kadri M, Qabajah MR (2013) Itemizing the bundle: achieving and maintaining „zero“ central line-associated bloodstream infection for over a year in a tertiary care hospital in Saudi Arabia. Am J Infect Control 41(12):1209–1213

    Article  PubMed  Google Scholar 

  71. Worth LJ, McLaws ML (2012) Is it possible to achieve a target of zero central line associated bloodstream infections? Curr Opin Infect Dis 25(6):650–657

    Article  PubMed  Google Scholar 

  72. Southworth SL, Henman LJ, Kinder LA, Sell JL (2012) The journey to zero central catheter-associated bloodstream infections: culture change in an intensive care unit. Crit Care Nurse 32(2):49–54

    Article  PubMed  Google Scholar 

  73. Secola R, Lewis MA, Pike N, Needleman J, Doering L (2012) „Targeting to zero“ in pediatric oncology: a review of central venous catheter-related bloodstream infections. J Pediatr Oncol Nurs 29(1):14–27

    Article  PubMed  Google Scholar 

  74. Raad II (2008) Commentary: zero tolerance for catheter-related bloodstream infections: the unnegotiable objective. Infect Control Hosp Epidemiol 29(10):951–953

    Article  PubMed  Google Scholar 

  75. Centers for Disease Control and Prevention (CDC) (2011) Vital signs: central line associated blood stream infections – United States, 2001, 2008, and 2009. MMWR Morb Mortal Wkly Rep 60(8):243–248

    Google Scholar 

  76. Deutsche Gesellschaft für Infektiologie e. V. (DGI), Bundesverband Deutscher Krankenhausapotheker e. V. (ADKA), Deutsche Gesellschaft für Hygiene und Mikrobiologie (DGHM), Deutsche Gesellschaft für Infektiologie e. V. (DGI), Bundesverband Deutscher Krankenhausapotheker e. V. (ADKA), Deutsche Gesellschaft für Hygiene und Mikrobiologie (DGHM) (2013) S3-Leitlinie. Strategien zur Sicherung rationaler Antibiotika-Anwendung im Krankenhaus. AWMF-Registernummer 092/001

    Google Scholar 

  77. Parienti JJ, Mongardon N, Megarbane B et al (2015) Intravascular complications of central venous catheterization by insertion site. N Engl J Med 373(13):1220–1229

    Article  CAS  PubMed  Google Scholar 

  78. Garnacho-Montero J, Aldabo-Pallas T, Palomar-Martinez M et al (2008) Risk factors and prognosis of catheter-related bloodstream infection in critically ill patients: a multicenter study. Intensive Care Med 34(12):2185–2193

    Article  PubMed  Google Scholar 

  79. Gastmeier P, Sohr D, Geffers C, Behnke M, Ruden H (2007) Risk factors for death due to nosocomial infection in intensive care unit patients: findings from the Krankenhaus Infektions Surveillance System. Infect Control Hosp Epidemiol 28(4):466–472

    Article  CAS  PubMed  Google Scholar 

  80. Chopra V, O'Horo JC, Rogers MA, Maki DG, Safdar N (2013) The risk of bloodstream infection associated with peripherally inserted central catheters compared with central venous catheters in adults: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 34(9):908–918

    Article  PubMed  Google Scholar 

  81. Zingg W, Sax H, Inan C et al (2009) Hospital-wide surveillance of catheter-related bloodstream infection: from the expected to the unexpected. J Hosp Infect 73(1):41–46

    Article  CAS  PubMed  Google Scholar 

  82. Zingg W, Cartier V, Inan C et al (2014) Hospital-wide multidisciplinary, multimodal intervention programme to reduce central venous catheter-associated bloodstream infection. PLOS ONE 9(4):e93898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (Hrsg) (2014) KISS Krankenhaus-Infektions-Surveillance-System. Infektionssurveillance im Modul ITS-KISS. Referenzdaten. Berechnungszeitraum: Januar 2009 bis Dezember 2013

    Google Scholar 

  84. Gastmeier P, Geffers C (2008) [Nosocomial infections in Germany. What are the numbers, based on the estimates for 2006?] Dtsch Med Wochenschr 133(21):1111–1115

    Article  CAS  PubMed  Google Scholar 

  85. Geffers C, Gastmeier P (2009) Häufigkeit und Vermeidbarkeit nosokomialer Infektionen in der Intensivmedizin. Intensiv-News 4:20–21

    Google Scholar 

  86. Tacconelli E, Smith G, Hieke K, Lafuma A, Bastide P (2009) Epidemiology, medical outcomes and costs of catheter-related bloodstream infections in intensive care units of four European countries: literature- and registry-based estimates. J Hosp Infect 72(2):97–103

    Article  CAS  PubMed  Google Scholar 

  87. Schroder C, Schwab F, Behnke M et al (2015) Epidemiology of healthcare associated infections in Germany: Nearly 20 years of surveillance. Int J Med Microbiol 305(7):799–806

    Article  CAS  PubMed  Google Scholar 

  88. Grisaru-Soen G, Sweed Y, Lerner-Geva L et al (2007) Nosocomial bloodstream infections in a pediatric intensive care unit: 3-year survey. Med Sci Monit 13(6):CR251–CR257

    PubMed  Google Scholar 

  89. Grisaru-Soen G, Paret G, Yahav D, Boyko V, Lerner-Geva L (2009) Nosocomial infections in pediatric cardiovascular surgery patients: A 4-year survey. Pediatr Crit Care Med 10(2):202–206

    Article  PubMed  Google Scholar 

  90. Urrea M, Pons M, Serra M, Latorre C, Palomeque A (2003) Prospective incidence study of nosocomial infections in a pediatric intensive care unit. Pediatr Infect Dis J 22(6):490–494

    PubMed  Google Scholar 

  91. Yogaraj JS, Elward AM, Fraser VJ (2002) Rate, risk factors, and outcomes of nosocomial primary bloodstream infection in pediatric intensive care unit patients. Pediatrics 110(3):481–485

    Article  PubMed  Google Scholar 

  92. Elward AM, Fraser VJ (2006) Risk factors for nosocomial primary bloodstream infection in pediatric intensive care unit patients: a 2-year prospective cohort study. Infect Control Hosp Epidemiol 27(6):553–560

    Article  PubMed  Google Scholar 

  93. Wylie MC, Graham DA, Potter-Bynoe G et al (2010) Risk factors for central line-associated bloodstream infection in pediatric intensive care units. Infect Control Hosp Epidemiol 31(10):1049–1056

    Article  PubMed  Google Scholar 

  94. Niedner MF, Huskins WC, Colantuoni E et al (2011) Epidemiology of central line-associated bloodstream infections in the pediatric intensive care unit. Infect Control Hosp Epidemiol 32(12):1200–1208

    Article  PubMed  Google Scholar 

  95. Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (Hrsg) (2014) KISS Krankenhaus-Infektions-Surveillance-System. Infektionssurveillance im Modul ITS-KISS. Referenzdaten. Berechnungszeitraum: Januar 2009 bis Dezember 2013. Pädiatrisch

    Google Scholar 

  96. Geffers C, Bärwolff S, Schwab F, Rüden H, Gastmeier P (2005) Surveillance nosokomialer Infektionen auf pädiatrischen und neonatologischen Intensivstationen in Deutschland. Pädiatr Prax 66:73–82

    Google Scholar 

  97. Mitt P, Metsvaht T, Adamson V et al (2014) Five-year prospective surveillance of nosocomial bloodstream infections in an Estonian paediatric intensive care unit. J Hosp Infect 86(2):95–99

    Article  CAS  PubMed  Google Scholar 

  98. Geffers C, Schwab F, Gastmeier P (2009) Nosokomiale Infektionen bei pädiatrischen Intensivpflegepatienten – Daten aus ITS-KISS. Hyg Med 34(9):336–342

    Google Scholar 

  99. Dresbach T, Prusseit J, Breuer J, Simon A (2009) Incidence of nosocomial infections in children undergoing cardiac surgery. Rev Med Microbiol 20(4):74–83

    Article  Google Scholar 

  100. Costello JM, Morrow DF, Graham DA, Potter-Bynoe G, Sandora TJ, Laussen PC (2008) Systematic intervention to reduce central line-associated bloodstream infection rates in a pediatric cardiac intensive care unit. Pediatrics 121(5):915–923

    Article  PubMed  Google Scholar 

  101. Bezzio S, Scolfaro C, Broglia R et al (2009) Prospective incidence study of bloodstream infection in infants and children with central venous catheters after cardiac surgery in Italy. Infect Control Hosp Epidemiol 30(7):698–701

    Article  PubMed  Google Scholar 

  102. Sheridan RL, Weber JM (2006) Mechanical and infectious complications of central venous cannulation in children: lessons learned from a 10-year experience placing more than 1000 catheters. J Burn Care Res 27(5):713–718

    Article  PubMed  Google Scholar 

  103. Sheridan RL (2005) Sepsis in pediatric burn patients. Pediatr Crit Care Med 6(3 Suppl):S112–S119

    Article  PubMed  Google Scholar 

  104. Goldstein AM, Weber JM, Sheridan RL (1997) Femoral venous access is safe in burned children: an analysis of 224 catheters. J Pediatr 130(3):442–446

    Article  CAS  PubMed  Google Scholar 

  105. Sheridan RL, Neely AN, Castillo MA et al (2012) A survey of invasive catheter practices in U.S. burn centers. J Burn Care Res 33(6):741–746

    Article  PubMed  Google Scholar 

  106. Gastmeier P, Weigt O, Sohr D, Ruden H (2002) Comparison of hospital-acquired infection rates in paediatric burn patients. J Hosp Infect 52(3):161–165

    Article  CAS  PubMed  Google Scholar 

  107. Weber JM, Sheridan RL, Fagan S, Ryan CM, Pasternack MS, Tompkins RG (2012) Incidence of catheter-associated bloodstream infection after introduction of minocycline and rifampin antimicrobial-coated catheters in a pediatric burn population. J Burn Care Res 33(4):539–543

    Article  PubMed  Google Scholar 

  108. Dudeck MA, Weiner LM, Allen-Bridson K et al (2013) National Healthcare Safety Network (NHSN) report, data summary for 2012, Device-associated module. Am J Infect Control 41(12):1148–1166

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (Hrsg) (2014) KISS Krankenhaus-Infektions-Surveillance-System. Infektionssurveillance im Modul ITS-KISS. Referenzdaten. Berechnungszeitraum: Januar 2009 bis Dezember 2013. Brandverletzte

    Google Scholar 

  110. Chittick P, Sherertz RJ (2010) Recognition and prevention of nosocomial vascular device and related bloodstream infections in the intensive care unit. Crit Care Med 38(8 Suppl):S363–S372

    Article  PubMed  Google Scholar 

  111. Pronovost PJ, Goeschel CA, Colantuoni E et al (2010) Sustaining reductions in catheter related bloodstream infections in Michigan intensive care units: observational study. BMJ 340:c309

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pronovost P, Needham D, Berenholtz S et al (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355(26):2725–2732

    Article  CAS  PubMed  Google Scholar 

  113. Climo M, Diekema D, Warren DK et al (2003) Prevalence of the use of central venous access devices within and outside of the intensive care unit: results of a survey among hospitals in the prevention epicenter program of the Centers for Disease Control and Prevention. Infect Control Hosp Epidemiol 24(12):942–945

    Article  PubMed  Google Scholar 

  114. Vonberg RP, Behnke M, Geffers C et al (2006) Device-associated infection rates for non-intensive care unit patients. Infect Control Hosp Epidemiol 27(4):357–361

    Article  PubMed  Google Scholar 

  115. Marschall J, Leone C, Jones M, Nihill D, Fraser VJ, Warren DK (2007) Catheter-associated bloodstream infections in general medical patients outside the intensive care unit: a surveillance study. Infect Control Hosp Epidemiol 28(8):905–909

    Article  PubMed  Google Scholar 

  116. Kallen AJ, Patel PR, O'Grady NP (2010) Preventing catheter-related bloodstream infections outside the intensive care unit: expanding prevention to new settings. Clin Infect Dis 51(3):335–341

    Article  PubMed  Google Scholar 

  117. Son CH, Daniels TL, Eagan JA et al (2012) Central line-associated bloodstream infection surveillance outside the intensive care unit: a multicenter survey. Infect Control Hosp Epidemiol 33(9):869–874

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (Hrsg) (2014) KISS Krankenhaus-Infektions-Surveillance-System. Infektionssurveillance im Modul STATIONS-KISS. Referenzdaten. Berechnungszeitraum: Januar 2009 bis Dezember 2013

    Google Scholar 

  119. Freixas N, Bella F, Limon E, Pujol M, Almirante B, Gudiol F (2013) Impact of a multimodal intervention to reduce bloodstream infections related to vascular catheters in non-ICU wards: a multicentre study. Clin Microbiol Infect 19(9):838–844

    Article  CAS  PubMed  Google Scholar 

  120. Medina A, Serratt T, Pelter M, Brancamp T (2014) Decreasing central line-associated bloodstream infections in the non-ICU population. J Nurs Care Qual 29(2):133–140

    Article  PubMed  Google Scholar 

  121. Klintworth G, Stafford J, O'Connor M et al (2014) Beyond the intensive care unit bundle: Implementation of a successful hospital-wide initiative to reduce central line-associated bloodstream infections. Am J Infect Control 42(6):685–687

    Article  PubMed  Google Scholar 

  122. Cotogni P, Pittiruti M, Barbero C, Monge T, Palmo A, Boggio Bertinet D (2013) Catheter-related complications in cancer patients on home parenteral nutrition: a prospective study of over 51,000 catheter days. JPEN J Parenter Enteral Nutr 37(3):375–383

    Article  PubMed  Google Scholar 

  123. Drews BB, Sanghavi R, Siegel JD, Metcalf P, Mittal NK (2009) Characteristics of catheter-related bloodstream infections in children with intestinal failure: implications for clinical management. Gastroenterol Nurs 32(6):385–390

    Article  PubMed  Google Scholar 

  124. Piper HG, Wales PW (2013) Prevention of catheter-related blood stream infections in children with intestinal failure. Curr Opin Gastroenterol 29(1):1–6

    Article  PubMed  Google Scholar 

  125. Piper HG, de Silva NT, Amaral JG, Avitzur Y, Wales PW (2013) Peripherally inserted central catheters for long-term parenteral nutrition in infants with intestinal failure. J Pediatr Gastroenterol Nutr 56(5):578–581

    Article  PubMed  Google Scholar 

  126. Buchman AL, Opilla M, Kwasny M, Diamantidis TG, Okamoto R (2014) Risk factors for the development of catheter-related bloodstream infections in patients receiving home parenteral nutrition. JPEN J Parenter Enteral Nutr 38(6):744–749

    Article  PubMed  Google Scholar 

  127. Gillanders L, Angstmann K, Ball P et al (2012) A prospective study of catheter-related complications in HPN patients. Clin Nutr 31(1):30–34

    Article  PubMed  Google Scholar 

  128. Simon A, Schmitt-Grohe S, Erdmann U et al (2012) Anforderungen an die Hygiene bei der medizinischen Versorgung von Patienten mit Cystischer Fibrose (Mukoviszidose). mhp, Wiesbaden

    Google Scholar 

  129. Cargill J, Etherington C, Peckham D, Conway S, Denton M (2012) Bloodstream infections in cystic fibrosis: nine years of experience in both adults and children. J Cyst Fibros 11(4):337–339

    Article  PubMed  Google Scholar 

  130. Decker BK, Palmore TN (2013) The role of water in healthcare-associated infections. Curr Opin Infect Dis 26(4):345–351

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kline S, Cameron S, Streifel A et al (2004) An outbreak of bacteremias associated with Mycobacterium mucogenicum in a hospital water supply. Infect Control Hosp Epidemiol 25(12):1042–1049

    Article  PubMed  Google Scholar 

  132. Exner M, Kramer A, Lajoie L, Gebel J, Engelhart S, Hartemann P (2005) Prevention and control of health care-associated waterborne infections in health care facilities. Am J Infect Control 33(5 Suppl 1):S26–S40

    Article  CAS  PubMed  Google Scholar 

  133. Trautmann M, Lepper PM, Haller M (2005) Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. Am J Infect Control 33(5 Suppl 1):S41–S49

    Article  PubMed  Google Scholar 

  134. Trautmann M, Halder S, Hoegel J, Royer H, Haller M (2008) Point-of-use water filtration reduces endemic Pseudomonas aeruginosa infections on a surgical intensive care unit. Am J Infect Control 36(6):421–429

    Article  PubMed  Google Scholar 

  135. Toscano CM, Bell M, Zukerman C et al (2009) Gram-negative bloodstream infections in hematopoietic stem cell transplant patients: the roles of needleless device use, bathing practices, and catheter care. Am J Infect Control 37(4):327–334

    Article  PubMed  Google Scholar 

  136. Schneider H, Geginat G, Hogardt M et al (2012) Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons. Pediatr Infect Dis J 31(6):648–650

    Article  PubMed  Google Scholar 

  137. Hota S, Hirji Z, Stockton K et al (2009) Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol 30(1):25–33

    Article  PubMed  Google Scholar 

  138. Pittet D, Wenzel RP (1995) Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch Intern Med 155(11):1177–1184

    Article  CAS  PubMed  Google Scholar 

  139. Gastmeier P, Sohr D, Geffers C, Zuschneid I, Behnke M, Ruden H (2005) [Mortality in German intensive care units: dying from or with a nosocomial infection?] Anasthesiol Intensivmed Notfallmed Schmerzther 40(5):267–272

    Article  CAS  PubMed  Google Scholar 

  140. Blot SI, Depuydt P, Annemans L et al (2005) Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis 41(11):1591–1598

    Article  PubMed  Google Scholar 

  141. Slonim AD, Kurtines HC, Sprague BM, Singh N (2001) The costs associated with nosocomial bloodstream infections in the pediatric intensive care unit. Pediatr Crit Care Med 2(2):170–174

    Article  PubMed  Google Scholar 

  142. Niven DJ, Fick GH, Kirkpatrick AW, Grant V, Laupland KB (2010) Cost and outcomes of nosocomial bloodstream infections complicating major traumatic injury. J Hosp Infect 76(4):296–299

    Article  CAS  PubMed  Google Scholar 

  143. Kaye KS, Marchaim D, Chen TY et al (2014) Effect of nosocomial bloodstream infections on mortality, length of stay, and hospital costs in older adults. J Am Geriatr Soc 62(2):306–311

    Article  PubMed  PubMed Central  Google Scholar 

  144. Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y (2005) The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol 26(2):166–174

    Article  PubMed  Google Scholar 

  145. Cosgrove SE (2006) The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 42(Suppl 2):S82–S89

    Article  PubMed  Google Scholar 

  146. Ziegler MJ, Pellegrini DC, Safdar N (2015) Attributable mortality of central line associated bloodstream infection: systematic review and meta-analysis. Infection 43(1):29–36

    Article  PubMed  Google Scholar 

  147. Elward AM, Hollenbeak CS, Warren DK, Fraser VJ (2005) Attributable cost of nosocomial primary bloodstream infection in pediatric intensive care unit patients. Pediatrics 115(4):868–872

    Article  PubMed  Google Scholar 

  148. Shannon RP, Patel B, Cummins D, Shannon AH, Ganguli G, Lu Y (2006) Economics of central line-associated bloodstream infections. Am J Med Qual 21(6 Suppl):7S–16S

    Article  PubMed  Google Scholar 

  149. Kim JS, Holtom P, Vigen C (2011) Reduction of catheter-related bloodstream infections through the use of a central venous line bundle: epidemiologic and economic consequences. Am J Infect Control 39(8):640–646

    Article  PubMed  Google Scholar 

  150. Warren DK, Quadir WW, Hollenbeak CS, Elward AM, Cox MJ, Fraser VJ (2006) Attributable cost of catheter-associated bloodstream infections among intensive care patients in a nonteaching hospital. Crit Care Med 34(8):2084–2089

    Article  PubMed  Google Scholar 

  151. Mittmann N, Koo M, Daneman N et al (2012) The economic burden of patient safety targets in acute care: a systematic review. Drug Healthc Patient Saf 4:141–165

    Article  PubMed  PubMed Central  Google Scholar 

  152. Leistner R, Hirsemann E, Bloch A, Gastmeier P, Geffers C (2014) Costs and prolonged length of stay of central venous catheter-associated bloodstream infections (CVC BSI): a matched prospective cohort study. Infection 42(1):31–36

    Article  CAS  PubMed  Google Scholar 

  153. Wright MO, Tropp J, Schora DM et al (2013) Continuous passive disinfection of catheter hubs prevents contamination and bloodstream infection. Am J Infect Control 41(1):33–38

    Article  PubMed  Google Scholar 

  154. Nowak JE, Brilli RJ, Lake MR et al (2010) Reducing catheter-associated bloodstream infections in the pediatric intensive care unit: Business case for quality improvement. Pediatr Crit Care Med 11(5):579–587

    Article  PubMed  Google Scholar 

  155. Tarricone R, Torbica A, Franzetti F, Rosenthal VD (2010) Hospital costs of central line-associated bloodstream infections and cost-effectiveness of closed vs. open infusion containers. The case of Intensive Care Units in Italy. Cost Eff Resour Alloc 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  156. Hugonnet S, Harbarth S, Sax H, Duncan RA, Pittet D (2004) Nursing resources: a major determinant of nosocomial infection? Curr Opin Infect Dis 17(4):329–333

    Article  PubMed  Google Scholar 

  157. Hugonnet S, Chevrolet JC, Pittet D (2007) The effect of workload on infection risk in critically ill patients. Crit Care Med 35(1):76–81

    Article  PubMed  Google Scholar 

  158. Fridkin SK, Pear SM, Williamson TH, Galgiani JN, Jarvis WR (1996) The role of understaffing in central venous catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 17(3):150–158

    Article  CAS  PubMed  Google Scholar 

  159. Needleman J, Buerhaus P, Mattke S, Stewart M, Zelevinsky K (2002) Nurse-staffing levels and the quality of care in hospitals. N Engl J Med 346(22):1715–1722

    Article  PubMed  Google Scholar 

  160. Assadian O, Toma CD, Rowley SD (2007) Implications of staffing ratios and workload limitations on healthcare-associated infections and the quality of patient care. Crit Care Med 35(1):296–298

    Article  PubMed  Google Scholar 

  161. Archibald LK, Manning ML, Bell LM, Banerjee S, Jarvis WR (1997) Patient density, nurse-to-patient ratio and nosocomial infection risk in a pediatric cardiac intensive care unit. Pediatr Infect Dis J 16(11):1045–1048

    Article  CAS  PubMed  Google Scholar 

  162. Stone PW, Pogorzelska M, Kunches L, Hirschhorn LR (2008) Hospital staffing and health care-associated infections: a systematic review of the literature. Clin Infect Dis 47(7):937–944

    Article  PubMed  PubMed Central  Google Scholar 

  163. Robert J, Fridkin SK, Blumberg HM et al (2000) The influence of the composition of the nursing staff on primary bloodstream infection rates in a surgical intensive care unit. Infect Control Hosp Epidemiol 21(1):12–17

    Article  CAS  PubMed  Google Scholar 

  164. Penoyer DA (2010) Nurse staffing and patient outcomes in critical care: a concise review. Crit Care Med 38(7):1521–1528

    Article  PubMed  Google Scholar 

  165. Cho SH, June KJ, Kim YM et al (2009) Nurse staffing, quality of nursing care and nurse job outcomes in intensive care units. J Clin Nurs 18(12):1729–1737

    Article  PubMed  Google Scholar 

  166. Alonso-Echanove J, Edwards JR, Richards MJ et al (2003) Effect of nurse staffing and antimicrobial-impregnated central venous catheters on the risk for bloodstream infections in intensive care units. Infect Control Hosp Epidemiol 24(12):916–925

    Article  PubMed  Google Scholar 

  167. Aktionsbündnis Patientensicherheit (APS), Aktion Saubere Hände (ASH), Deutsche Gesellschaft für Hygiene und Mikrobiologie (DGHM) et al (Hrsg) (2015) Infektionsprävention – Prävention – Initiative (IPI). Infektionsprävention und Pflegepersonalausstattung

    Google Scholar 

  168. Zingg W, Holmes A, Dettenkofer M et al (2015) Hospital organisation, management, and structure for prevention of health-care-associated infection: a systematic review and expert consensus. Lancet Infect Dis 15(2):212–224

    Article  PubMed  Google Scholar 

  169. Cimiotti JP, Aiken LH, Sloane DM, Wu ES (2012) Nurse staffing, burnout, and health care-associated infection. Am J Infect Control 40(6):486–490

    Article  PubMed  PubMed Central  Google Scholar 

  170. Resar RK (2006) Making noncatastrophic health care processes reliable: Learning to walk before running in creating high-reliability organizations. Health Serv Res 41(4 Pt 2):1677–1689

    Article  PubMed  PubMed Central  Google Scholar 

  171. Schwab F, Meyer E, Geffers C, Gastmeier P (2011) Understaffing, overcrowding, inappropriate nurse:ventilated patient ratio and nosocomial infections: which parameter is the best reflection of deficits? J Hosp Infect 80(2):133–139

    Article  PubMed  Google Scholar 

  172. Clements A, Halton K, Graves N et al (2008) Overcrowding and understaffing in modern health-care systems: key determinants in meticillin-resistant Staphylococcus aureus transmission. Lancet Infect Dis 8(7):427–434

    Article  PubMed  Google Scholar 

  173. Sax H, Allegranzi B, Uckay I, Larson E, Boyce J, Pittet D (2007) 'My five moments for hand hygiene': a user-centred design approach to understand, train, monitor and report hand hygiene. J Hosp Infect 67(1):9–21

    Article  CAS  PubMed  Google Scholar 

  174. Reichardt C, Koniger D, Bunte-Schonberger K et al (2013) Three years of national hand hygiene campaign in Germany: what are the key conclusions for clinical practice? J Hosp Infect 83(Suppl 1):S11–S16

    Article  PubMed  Google Scholar 

  175. Pittet D (2000) Improving compliance with hand hygiene in hospitals. Infect Control Hosp Epidemiol 21(6):381–386

    Article  CAS  PubMed  Google Scholar 

  176. Pittet D, Simon A, Hugonnet S, Pessoa-Silva CL, Sauvan V, Perneger TV (2004) Hand hygiene among physicians: performance, beliefs, and perceptions. Ann Intern Med 141(1):1–8

    Article  PubMed  Google Scholar 

  177. Rosenthal VD, Guzman S, Safdar N (2005) Reduction in nosocomial infection with improved hand hygiene in intensive care units of a tertiary care hospital in Argentina. Am J Infect Control 33(7):392–397

    Article  PubMed  Google Scholar 

  178. Mernelius S, Svensson PO, Rensfeldt G et al (2012) Compliance with hygiene guidelines: the effect of a multimodal hygiene intervention and validation of direct observations. Am J Infect Control 41(5):e45–e48

    Article  Google Scholar 

  179. Edwards R, Charani E, Sevdalis N et al (2012) Optimisation of infection prevention and control in acute health care by use of behaviour change: a systematic review. Lancet Infect Dis 12(4):318–329

    Article  PubMed  Google Scholar 

  180. Pittet D (2004) The Lowbury lecture: behaviour in infection control. J Hosp Infect 58(1):1–13

    Article  CAS  PubMed  Google Scholar 

  181. Raad II, Hohn DC, Gilbreath BJ et al (1994) Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 15(4 Pt 1):231–238

    Article  CAS  PubMed  Google Scholar 

  182. Lee DH, Jung KY, Choi YH (2008) Use of maximal sterile barrier precautions and/or antimicrobial-coated catheters to reduce the risk of central venous catheter-related bloodstream infection. Infect Control Hosp Epidemiol 29(10):947–950

    Article  PubMed  Google Scholar 

  183. Young EM, Commiskey ML, Wilson SJ (2006) Translating evidence into practice to prevent central venous catheter-associated bloodstream infections: a systems-based intervention. Am J Infect Control 34(8):503–506

    Article  PubMed  Google Scholar 

  184. Ishikawa Y, Kiyama T, Haga Y et al (2010) Maximal sterile barrier precautions do not reduce catheter-related bloodstream infections in general surgery units: a multi-institutional randomized controlled trial. Ann Surg 251(4):620–623

    Article  PubMed  Google Scholar 

  185. Kim CS, Spahlinger DA, Kin JM, Coffey RJ, Billi JE (2009) Implementation of lean thinking: one health system's journey. Jt Comm J Qual Patient Saf 35(8):406–413

    Article  PubMed  Google Scholar 

  186. Barsuk JH, Cohen ER, Feinglass J, McGaghie WC, Wayne DB (2009) Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med 169(15):1420–1423

    Article  PubMed  Google Scholar 

  187. Barsuk JH, Cohen ER, McGaghie WC, Wayne DB (2010) Long-term retention of central venous catheter insertion skills after simulation-based mastery learning. Acad Med 85(10 Suppl):S9–S12

    Article  PubMed  Google Scholar 

  188. Barsuk JH, McGaghie WC, Cohen ER, O'Leary KJ, Wayne DB (2009) Simulation-based mastery learning reduces complications during central venous catheter insertion in a medical intensive care unit. Crit Care Med 37(10):2697–2701

    PubMed  Google Scholar 

  189. Ma IW, Brindle ME, Ronksley PE, Lorenzetti DL, Sauve RS, Ghali WA (2011) Use of simulation-based education to improve outcomes of central venous catheterization: a systematic review and meta-analysis. Acad Med 86(9):1137–1147

    Article  PubMed  Google Scholar 

  190. Evans LV, Dodge KL, Shah TD et al (2010) Simulation training in central venous catheter insertion: improved performance in clinical practice. Acad Med 85(9):1462–1469

    Article  PubMed  Google Scholar 

  191. Latif RK, Bautista AF, Memon SB et al (2012) Teaching aseptic technique for central venous access under ultrasound guidance: a randomized trial comparing didactic training alone to didactic plus simulation-based training. Anesth Analg 114(3):626–633

    Article  PubMed  Google Scholar 

  192. Burden AR, Torjman MC, Dy GE et al (2012) Prevention of central venous catheter-related bloodstream infections: is it time to add simulation training to the prevention bundle? J Clin Anesth 24(7):555–560

    Article  PubMed  Google Scholar 

  193. Khouli H, Jahnes K, Shapiro J et al (2011) Performance of medical residents in sterile techniques during central vein catheterization: randomized trial of efficacy of simulation-based training. Chest 139(1):80–87

    Article  PubMed  Google Scholar 

  194. Karakitsos D, Labropoulos N, De Groot E et al (2006) Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care 10(6):R162

    Article  PubMed  PubMed Central  Google Scholar 

  195. Hayashi H, Amano M (2002) Does ultrasound imaging before puncture facilitate internal jugular vein cannulation? Prospective randomized comparison with landmark-guided puncture in ventilated patients. J Cardiothorac Vasc Anesth 16(5):572–575

    Article  PubMed  Google Scholar 

  196. Martin MJ, Husain FA, Piesman M et al (2004) Is routine ultrasound guidance for central line placement beneficial? A prospective analysis. Curr Surg 61(1):71–74

    Article  PubMed  Google Scholar 

  197. Froehlich CD, Rigby MR, Rosenberg ES et al (2009) Ultrasound-guided central venous catheter placement decreases complications and decreases placement attempts compared with the landmark technique in patients in a pediatric intensive care unit. Crit Care Med 37(3):1090–1096

    Article  PubMed  Google Scholar 

  198. Cartier V, Haenny A, Inan C, Walder B, Zingg W (2014) No association between ultrasound-guided insertion of central venous catheters and bloodstream infection: a prospective observational study. J Hosp Infect 87(2):103–108

    Article  CAS  PubMed  Google Scholar 

  199. Ge X, Cavallazzi R, Li C, Pan SM, Wang YW, Wang FL (2012) Central venous access sites for the prevention of venous thrombosis, stenosis and infection. Cochrane Database Syst Rev 3:CD004084

    Google Scholar 

  200. Deshpande KS, Hatem C, Ulrich HL et al (2005) The incidence of infectious complications of central venous catheters at the subclavian, internal jugular, and femoral sites in an intensive care unit population. Crit Care Med 33(1):13–20

    Article  PubMed  Google Scholar 

  201. Marik PE, Flemmer M, Harrison W (2012) The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis. Crit Care Med 40(8):2479–2485

    Article  PubMed  Google Scholar 

  202. Lorente L, Henry C, Martin MM, Jimenez A, Mora ML (2005) Central venous catheter-related infection in a prospective and observational study of 2,595 catheters. Crit Care 9(6):R631–R635

    Article  PubMed  PubMed Central  Google Scholar 

  203. Lorente L, Jimenez A (2013) Central venous catheter site: should we really stop avoiding the femoral vein? Crit Care Med 41(4):e34

    Article  PubMed  Google Scholar 

  204. Lorente L, Jimenez A, Santana M et al (2007) Microorganisms responsible for intravascular catheter-related bloodstream infection according to the catheter site. Crit Care Med 35(10):2424–2427

    Article  PubMed  Google Scholar 

  205. Nagashima G, Kikuchi T, Tsuyuzaki H et al (2006) To reduce catheter-related bloodstream infections: is the subclavian route better than the jugular route for central venous catheterization? J Infect Chemother 12(6):363–365

    Article  PubMed  Google Scholar 

  206. Merrer J, De Jonghe B, Golliot F et al (2001) Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 286(6):700–707

    Article  CAS  PubMed  Google Scholar 

  207. Timsit JF, Bouadma L, Mimoz O et al (2013) Jugular versus femoral short-term catheterization and risk of infection in intensive care unit patients. Causal analysis of two randomized trials. Am J Respir Crit Care Med 188(10):1232–1239

    Article  PubMed  Google Scholar 

  208. Casanegra AI, Brannan S, Dadu R et al (2011) Short-term femoral vein catheterization rarely causes thrombosis or bacteremia. J Hosp Med 6(1):33–36

    Article  PubMed  Google Scholar 

  209. Gowardman JR, Robertson IK, Parkes S, Rickard CM (2008) Influence of insertion site on central venous catheter colonization and bloodstream infection rates. Intensive Care Med 34(6):1038–1045

    Article  PubMed  Google Scholar 

  210. Parienti JJ, Thirion M, Megarbane B et al (2008) Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA 299(20):2413–2422

    Article  CAS  PubMed  Google Scholar 

  211. Parienti JJ, du Cheyron D, Timsit JF et al (2012) Meta-analysis of subclavian insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults. Crit Care Med 40(5):1627–1634

    Article  PubMed  Google Scholar 

  212. Ruesch S, Walder B, Tramer MR (2002) Complications of central venous catheters: internal jugular versus subclavian access – a systematic review. Crit Care Med 30(2):454–460

    Article  PubMed  Google Scholar 

  213. de Jonge RC, Polderman KH, Gemke RJ (2005) Central venous catheter use in the pediatric patient: mechanical and infectious complications. Pediatr Crit Care Med 6(3):329–339

    Article  PubMed  Google Scholar 

  214. Reyes JA, Habash ML, Taylor RP (2012) Femoral central venous catheters are not associated with higher rates of infection in the pediatric critical care population. Am J Infect Control 40(1):43–47

    Article  PubMed  Google Scholar 

  215. Lorente L, Jimenez A, Martin MM et al (2009) Influence of tracheostomy on the incidence of central venous catheter-related bacteremia. Eur J Clin Microbiol Infect Dis 28(9):1141–1145

    Article  CAS  PubMed  Google Scholar 

  216. Lorente L, Jimenez A, Martin MM, Palmero S, Jimenez JJ, Mora ML (2011) Lower incidence of catheter-related bloodstream infection in subclavian venous access in the presence of tracheostomy than in femoral venous access: prospective observational study. Clin Microbiol Infect 17(6):870–872

    Article  CAS  PubMed  Google Scholar 

  217. Lorente L, Jimenez A, Roca I, Martin MM, Mora ML (2011) Influence of tracheostomy on the incidence of catheter-related bloodstream infection in the catheterization of jugular vein by posterior access. Eur J Clin Microbiol Infect Dis 30(9):1049–1051

    Article  CAS  PubMed  Google Scholar 

  218. Chopra V, Anand S, Krein SL, Chenoweth C, Saint S (2012) Bloodstream infection, venous thrombosis, and peripherally inserted central catheters: reappraising the evidence. Am J Med 125(8):733–741

    Article  PubMed  Google Scholar 

  219. Gunst M, Matsushima K, Vanek S, Gunst R, Shafi S, Frankel H (2011) Peripherally inserted central catheters may lower the incidence of catheter-related blood stream infections in patients in surgical intensive care units. Surg Infect (Larchmt) 12(4):279–282

    Article  Google Scholar 

  220. Fearonce G, Faraklas I, Saffle JR, Cochran A (2010) Peripherally inserted central venous catheters and central venous catheters in burn patients: a comparative review. J Burn Care Res 31(1):31–35

    Article  PubMed  Google Scholar 

  221. Safdar N, Maki DG (2005) Risk of catheter-related bloodstream infection with peripherally inserted central venous catheters used in hospitalized patients. Chest 128(2):489–495

    Article  PubMed  Google Scholar 

  222. Pongruangporn M, Ajenjo MC, Russo AJ et al (2013) Patient- and device-specific risk factors for peripherally inserted central venous catheter-related bloodstream infections. Infect Control Hosp Epidemiol 34(2):184–189

    Article  PubMed  Google Scholar 

  223. Ajenjo MC, Morley JC, Russo AJ et al (2011) Peripherally inserted central venous catheter-associated bloodstream infections in hospitalized adult patients. Infect Control Hosp Epidemiol 32(2):125–130

    Article  PubMed  Google Scholar 

  224. Chopra V, Anand S, Hickner A et al (2013) Risk of venous thromboembolism associated with peripherally inserted central catheters: a systematic review and meta-analysis. Lancet 382(9889):311–325

    Article  PubMed  Google Scholar 

  225. Patel GS, Jain K, Kumar R et al (2014) Comparison of peripherally inserted central venous catheters (PICC) versus subcutaneously implanted port-chamber catheters by complication and cost for patients receiving chemotherapy for non-haematological malignancies. Support Care Cancer 22(1):121–128

    Article  CAS  PubMed  Google Scholar 

  226. Levy I, Bendet M, Samra Z, Shalit I, Katz J (2010) Infectious complications of peripherally inserted central venous catheters in children. Pediatr Infect Dis J 29(5):426–429

    Article  PubMed  Google Scholar 

  227. Jumani K, Advani S, Reich NG, Gosey L, Milstone AM (2013) Risk factors for peripherally inserted central venous catheter complications in children. JAMA Pediatr 167(5):429–435

    Article  PubMed  PubMed Central  Google Scholar 

  228. Dobbins BM, Catton JA, Kite P, McMahon MJ, Wilcox MH (2003) Each lumen is a potential source of central venous catheter-related bloodstream infection. Crit Care Med 31(6):1688–1690

    Article  PubMed  Google Scholar 

  229. Dezfulian C, Lavelle J, Nallamothu BK, Kaufman SR, Saint S (2003) Rates of infection for single-lumen versus multilumen central venous catheters: a meta-analysis. Crit Care Med 31(9):2385–2390

    Article  PubMed  Google Scholar 

  230. Templeton A, Schlegel M, Fleisch F et al (2008) Multilumen central venous catheters increase risk for catheter-related bloodstream infection: prospective surveillance study. Infection 36(4):322–327

    Article  CAS  PubMed  Google Scholar 

  231. Zurcher M, Tramer MR, Walder B (2004) Colonization and bloodstream infection with single- versus multi-lumen central venous catheters: a quantitative systematic review. Anesth Analg 99(1):177–182

    Article  PubMed  Google Scholar 

  232. Scheithauer S, Hafner H, Schroder J et al (2013) Simultaneous placement of multiple central lines increases central line-associated bloodstream infection rates. Am J Infect Control 41(2):113–117

    Article  PubMed  Google Scholar 

  233. Aslakson RA, Romig M, Galvagno SM et al (2011) Effect of accounting for multiple concurrent catheters on central line-associated bloodstream infection rates: practical data supporting a theoretical concern. Infect Control Hosp Epidemiol 32(2):121–124

    Article  PubMed  Google Scholar 

  234. Odetola FO, Moler FW, Dechert RE, VanDerElzen K, Chenoweth C (2003) Nosocomial catheter-related bloodstream infections in a pediatric intensive care unit: risk and rates associated with various intravascular technologies. Pediatr Crit Care Med 4(4):432–436

    Article  PubMed  Google Scholar 

  235. Mermel LA, McCormick RD, Springman SR, Maki DG (1991) The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med 91(3B):197S–205S

    Article  CAS  PubMed  Google Scholar 

  236. Ho KM, Litton E (2006) Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. J Antimicrob Chemother 58(2):281–287

    Article  CAS  PubMed  Google Scholar 

  237. Gillies D, O'Riordan L, Carr D, Frost J, Gunning R, O'Brien I (2003) Gauze and tape and transparent polyurethane dressings for central venous catheters. Cochrane Database Syst Rev 4:CD003827

    Google Scholar 

  238. Gillies D, O'Riordan E, Carr D, O'Brien I, Frost J, Gunning R (2003) Central venous catheter dressings: a systematic review. J Adv Nurs 44(6):623–632

    Article  PubMed  Google Scholar 

  239. Bambi S, Lucchini A, Giusti M (2014) Insertion site care of central venous catheters: are guidelines clear enough? J Hosp Infect 86(4):276–277

    Article  CAS  PubMed  Google Scholar 

  240. Rupp ME, Cassling K, Faber H et al (2013) Hospital-wide assessment of compliance with central venous catheter dressing recommendations. Am J Infect Control 41(1):89–91

    Article  PubMed  Google Scholar 

  241. Webster J, Gillies D, O'Riordan E, Sherriff KL, Rickard CM (2011) Gauze and tape and transparent polyurethane dressings for central venous catheters. Cochrane Database Syst Rev 11:CD003827

    Google Scholar 

  242. Roberts B, Cheung D (1998) Biopatch – a new concept in antimicrobial dressings for invasive devices. Aust Crit Care 11(1):16–19

    Article  CAS  PubMed  Google Scholar 

  243. Pfaff B, Heithaus T, Emanuelsen M (2012) Use of a 1-piece chlorhexidine gluconate transparent dressing on critically ill patients. Crit Care Nurse 32(4):35–40

    Article  PubMed  Google Scholar 

  244. Shapey IM, Foster MA, Whitehouse T, Jumaa P, Bion JF (2009) Central venous catheter-related bloodstream infections: improving post-insertion catheter care. J Hosp Infect 71(2):117–122

    Article  CAS  PubMed  Google Scholar 

  245. Guerin K, Wagner J, Rains K, Bessesen M (2010) Reduction in central line-associated bloodstream infections by implementation of a postinsertion care bundle. Am J Infect Control 38(6):430–433

    Article  PubMed  Google Scholar 

  246. Hatler C, Buckwald L, Salas-Allison Z, Murphy-Taylor C (2009) Evaluating central venous catheter care in a pediatric intensive care unit. Am J Crit Care 18(6):514–520

    Article  PubMed  Google Scholar 

  247. Miller SE, Maragakis LL (2012) Central line-associated bloodstream infection prevention. Curr Opin Infect Dis 25(4):412–422

    Article  PubMed  Google Scholar 

  248. Miller MR, Niedner MF, Huskins WC et al (2011) Reducing PICU central line-associated bloodstream infections: 3-year results. Pediatrics 128(5):e1077–e1083

    Article  PubMed  Google Scholar 

  249. Schwebel C, Lucet JC, Vesin A et al (2012) Economic evaluation of chlorhexidine-impregnated sponges for preventing catheter-related infections in critically ill adults in the Dressing Study. Crit Care Med 40(1):11–17

    Article  PubMed  Google Scholar 

  250. National Institute for Health and Clinical Excellence (NICE) (Hrsg) (2015) The 3 M Tegaderm CHG IV securement dressing for central venous and arterial catheter insertion sites. Medical Technology Guidance

    Google Scholar 

  251. Maunoury F, Motrunich A, Palka-Santini M, Bernatchez SF, Ruckly S, Timsit JF (2015) Cost-effectiveness analysis of a transparent antimicrobial dressing for managing central venous and arterial catheters in intensive care units. PLOS ONE 10(6):e0130439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Levy I, Katz J, Solter E et al (2005) Chlorhexidine-impregnated dressing for prevention of colonization of central venous catheters in infants and children: a randomized controlled study. Pediatr Infect Dis J 24(8):676–679

    Article  PubMed  Google Scholar 

  253. Camins BC, Richmond AM, Dyer KL et al (2010) A crossover intervention trial evaluating the efficacy of a chlorhexidine-impregnated sponge in reducing catheter-related bloodstream infections among patients undergoing hemodialysis. Infect Control Hosp Epidemiol 31(11):1118–1123

    Article  PubMed  PubMed Central  Google Scholar 

  254. Safdar N, O'Horo JC, Ghufran A et al (2014) Chlorhexidine-impregnated dressing for prevention of catheter-related bloodstream infection: a meta-analysis. Crit Care Med 42(7):1703–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Pronovost PJ, Berenholtz SM, Needham DM (2008) Translating evidence into practice: a model for large scale knowledge translation. BMJ 337:a1714

    Article  PubMed  Google Scholar 

  256. Saint S, Kowalski CP, Banaszak-Holl J, Forman J, Damschroder L, Krein SL (2010) The importance of leadership in preventing healthcare-associated infection: results of a multisite qualitative study. Infect Control Hosp Epidemiol 31(9):901–907

    Article  PubMed  Google Scholar 

  257. Krein SL, Damschroder LJ, Kowalski CP, Forman J, Hofer TP, Saint S (2010) The influence of organizational context on quality improvement and patient safety efforts in infection prevention: a multi-center qualitative study. Soc Sci Med 71(9):1692–1701

    Article  PubMed  Google Scholar 

  258. Huang EY, Chen C, Abdullah F et al (2011) Strategies for the prevention of central venous catheter infections: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg 46(10):2000–2011

    Article  PubMed  Google Scholar 

  259. Laura R, Degl'Innocenti M, Mocali M et al (2000) Comparison of two different time interval protocols for central venous catheter dressing in bone marrow transplant patients: results of a randomized, multicenter study. The Italian Nurse Bone Marrow Transplant Group (GITMO). Haematologica 85(3):275–279

    CAS  PubMed  Google Scholar 

  260. Vokurka S, Bystricka E, Visokaiova M, Scudlova J (2009) Once- versus twice-weekly changing of central venous catheter occlusive dressing in intensive chemotherapy patients: results of a randomized multicenter study. Med Sci Monit 15(3):CR107–CR110

    PubMed  Google Scholar 

  261. Maki DG, Ringer M, Alvarado CJ (1991) Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet 338(8763):339–343

    Article  CAS  PubMed  Google Scholar 

  262. Maki D (2014) Autor's Reply to Maiwald et al. Lancet 384(October 11):1345–1346

    Article  PubMed  Google Scholar 

  263. Maiwald M, Assam PN, Chan ES, Dancer SJ (2014) Chlorhexidine's role in skin antisepsis: questioning the evidence. Lancet 384(9951):1344–1345

    Article  PubMed  Google Scholar 

  264. Maiwald M, Chan ES (2012) The forgotten role of alcohol: a systematic review and meta-analysis of the clinical efficacy and perceived role of chlorhexidine in skin antisepsis. PLOS ONE 7(9):e44277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Maiwald M, Chan ES (2014) Pitfalls in evidence assessment: the case of chlorhexidine and alcohol in skin antisepsis. J Antimicrob Chemother 69(8):2017–2021

    Article  CAS  PubMed  Google Scholar 

  266. Reichel M, Heisig P, Kohlmann T, Kampf G (2009) Alcohols for skin antisepsis at clinically relevant skin sites. Antimicrob Agents Chemother 53(11):4778–4782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Ulmer M, Lademann J, Patzelt A et al (2014) New strategies for preoperative skin antisepsis. Skin Pharmacol Physiol 27(6):283–292

    Article  CAS  PubMed  Google Scholar 

  268. Mimoz O, Pieroni L, Lawrence C et al (1996) Prospective, randomized trial of two antiseptic solutions for prevention of central venous or arterial catheter colonization and infection in intensive care unit patients. Crit Care Med 24(11):1818–1823

    Article  CAS  PubMed  Google Scholar 

  269. Mimoz O, Lucet JC, Kerforne T et al (2015) Skin antisepsis with chlorhexidine-alcohol versus povidone iodine-alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (CLEAN): an open-label, multicentre, randomised, controlled, two-by-two factorial trial. Lancet 386(10008):2069–2077

    Article  CAS  PubMed  Google Scholar 

  270. Koburger T, Hubner NO, Braun M, Siebert J, Kramer A (2010) Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother 65(8):1712–1719

    Article  CAS  PubMed  Google Scholar 

  271. Muller G, Langer J, Siebert J, Kramer A (2014) Residual antimicrobial effect of chlorhexidine digluconate and octenidine dihydrochloride on reconstructed human epidermis. Skin Pharmacol Physiol 27(1):1–8

    Article  CAS  PubMed  Google Scholar 

  272. Hubner NO, Siebert J, Kramer A (2010) Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol 23(5):244–258

    Article  PubMed  CAS  Google Scholar 

  273. Pham NH, Weiner JM, Reisner GS, Baldo BA (2000) Anaphylaxis to chlorhexidine. Case report. Implication of immunoglobulin E antibodies and identification of an allergenic determinant. Clin Exp Allergy 30(7):1001–1007

    Article  CAS  PubMed  Google Scholar 

  274. Stingeni L, Lapomarda V, Lisi P (1995) Occupational hand dermatitis in hospital environments. Contact Derm 33(3):172–176

    Article  CAS  PubMed  Google Scholar 

  275. Faber M, Leysen J, Bridts C, Sabato V, De Clerck LS, Ebo DG (2012) Allergy to chlorhexidine: beware of the central venous catheter. Acta Anaesthesiol Belg 63(4):191–194

    CAS  PubMed  Google Scholar 

  276. Guleri A, Kumar A, Morgan RJ, Hartley M, Roberts DH (2012) Anaphylaxis to chlorhexidine-coated central venous catheters: a case series and review of the literature. Surg Infect (Larchmt) 13(3):171–174

    Article  Google Scholar 

  277. Khoo A, Oziemski P (2011) Chlorhexidine impregnated central venous catheter inducing an anaphylatic shock in the intensive care unit. Heart Lung Circ 20(10):669–670

    Article  CAS  PubMed  Google Scholar 

  278. Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) (2013) Chlorhexidin: Anaphylaktische Reaktionen. http://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RI/2013/RI-chlorhexidin.html . Zugegriffen: 6 Dez 2016

    Google Scholar 

  279. Horner C, Mawer D, Wilcox M (2012) Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter? J Antimicrob Chemother 67(11):2547–2559

    Article  CAS  PubMed  Google Scholar 

  280. Tattawasart U, Maillard JY, Furr JR, Russell AD (1999) Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J Hosp Infect 42(3):219–229

    Article  CAS  PubMed  Google Scholar 

  281. Fritz SA, Hogan PG, Camins BC et al (2013) Mupirocin and chlorhexidine resistance in Staphylococcus aureus in patients with community-onset skin and soft tissue infections. Antimicrob Agents Chemother 57(1):559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. McNeil J, Ligon J, Hulten K et al (2013) Staphylococcus aureus infections in children with congenital heart disease. J Pediatric Infect Dis Soc 2(4):337–344

    Article  PubMed  Google Scholar 

  283. McNeil JC, Hulten KG, Kaplan SL, Mahoney DH, Mason EO (2013) Staphylococcus aureus infections in pediatric oncology patients: high rates of antimicrobial resistance, antiseptic tolerance and complications. Pediatr Infect Dis J 32(2):124–128

    Article  PubMed  Google Scholar 

  284. Ho CM, Li CY, Ho MW, Lin CY, Liu SH, Lu JJ (2012) High rate of qacA- and qacB-positive methicillin-resistant Staphylococcus aureus isolates from chlorhexidine-impregnated catheter-related bloodstream infections. Antimicrob Agents Chemother 56(11):5693–5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Lee AS, Macedo-Vinas M, Francois P et al (2011) Impact of combined low-level mupirocin and genotypic chlorhexidine resistance on persistent methicillin-resistant Staphylococcus aureus carriage after decolonization therapy: a case-control study. Clin Infect Dis 52(12):1422–1430

    Article  CAS  PubMed  Google Scholar 

  286. McGann P, Kwak YI, Summers A, Cummings JF, Waterman PE, Lesho EP (2011) Detection of qacA/B in clinical isolates of methicillin-resistant Staphylococcus aureus from a regional healthcare network in the eastern United States. Infect Control Hosp Epidemiol 32(11):1116–1119

    Article  PubMed  Google Scholar 

  287. Otter JA, Patel A, Cliff PR, Halligan EP, Tosas O, Edgeworth JD (2013) Selection for qacA carriage in CC22, but not CC30, methicillin-resistant Staphylococcus aureus bloodstream infection isolates during a successful institutional infection control programme. J Antimicrob Chemother 68(5):992–999

    Article  CAS  PubMed  Google Scholar 

  288. Gradel KO, Randall L, Sayers AR, Davies RH (2005) Possible associations between Salmonella persistence in poultry houses and resistance to commonly used disinfectants and a putative role of mar. Vet Microbiol 107(1–2):127–138

    Article  PubMed  Google Scholar 

  289. Langsrud S, Sundheim G, Borgmann-Strahsen R (2003) Intrinsic and acquired resistance to quaternary ammonium compounds in food-related Pseudomonas spp. J Appl Microbiol 95(4):874–882

    Article  CAS  PubMed  Google Scholar 

  290. Al-Doori Z, Goroncy-Bermes P, Gemmell CG, Morrison D (2007) Low-level exposure of MRSA to octenidine dihydrochloride does not select for resistance. J Antimicrob Chemother 59(6):1280–1281

    Article  CAS  PubMed  Google Scholar 

  291. Patel JB, Gorwitz RJ, Jernigan JA (2009) Mupirocin resistance. Clin Infect Dis 49(6):935–941

    Article  CAS  PubMed  Google Scholar 

  292. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2014) Empfehlungen zur Prävention und Kontrolle von Methicillin-resistenten Staphylococcus aureus-Stämmen (MRSA) in medizinischen und pflegerischen Einrichtungen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsblatt 57(6):696–732

    Google Scholar 

  293. Ammerlaan HS, Kluytmans JA, Wertheim HF, Nouwen JL, Bonten MJ (2009) Eradication of methicillin-resistant Staphylococcus aureus carriage: a systematic review. Clin Infect Dis 48(7):922–930

    Article  CAS  PubMed  Google Scholar 

  294. Milstone AM, Passaretti CL, Perl TM (2008) Chlorhexidine: expanding the armamentarium for infection control and prevention. Clin Infect Dis 46(2):274–281

    Article  PubMed  Google Scholar 

  295. Popovich KJ, Lyles R, Hayes R et al (2012) Relationship between chlorhexidine gluconate skin concentration and microbial density on the skin of critically ill patients bathed daily with chlorhexidine gluconate. Infect Control Hosp Epidemiol 33(9):889–896

    Article  PubMed  PubMed Central  Google Scholar 

  296. Climo MW, Sepkowitz KA, Zuccotti G et al (2009) The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit Care Med 37(6):1858–1865

    Article  CAS  PubMed  Google Scholar 

  297. Climo MW, Yokoe DS, Warren DK et al (2013) Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med 368(6):533–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Huang SS, Septimus E, Kleinman K et al (2013) Targeted versus universal decolonization to prevent ICU infection. N Engl J Med 368(24):2255–2265

    Article  CAS  PubMed  Google Scholar 

  299. Montecalvo MA, McKenna D, Yarrish R et al (2012) Chlorhexidine bathing to reduce central venous catheter-associated bloodstream infection: impact and sustainability. Am J Med 125(5):505–511

    Article  CAS  PubMed  Google Scholar 

  300. Bleasdale SC, Trick WE, Gonzalez IM, Lyles RD, Hayden MK, Weinstein RA (2007) Effectiveness of chlorhexidine bathing to reduce catheter-associated bloodstream infections in medical intensive care unit patients. Arch Intern Med 167(19):2073–2079

    Article  PubMed  Google Scholar 

  301. O'Horo JC, Silva GL, Munoz-Price LS, Safdar N (2012) The efficacy of daily bathing with chlorhexidine for reducing healthcare-associated bloodstream infections: a meta-analysis. Infect Control Hosp Epidemiol 33(3):257–267

    Article  PubMed  Google Scholar 

  302. Popovich KJ, Hota B, Hayes R, Weinstein RA, Hayden MK (2009) Effectiveness of routine patient cleansing with chlorhexidine gluconate for infection prevention in the medical intensive care unit. Infect Control Hosp Epidemiol 30(10):959–963

    Article  PubMed  Google Scholar 

  303. Munoz-Price LS, Hota B, Stemer A, Weinstein RA (2009) Prevention of bloodstream infections by use of daily chlorhexidine baths for patients at a long-term acute care hospital. Infect Control Hosp Epidemiol 30(11):1031–1035

    Article  PubMed  Google Scholar 

  304. Karki S, Cheng AC (2012) Impact of non-rinse skin cleansing with chlorhexidine gluconate on prevention of healthcare-associated infections and colonization with multi-resistant organisms: a systematic review. J Hosp Infect 82(2):71–84

    Article  CAS  PubMed  Google Scholar 

  305. Milstone AM, Elward A, Song X et al (2013) Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial. Lancet 381(9872):1099–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Popovich KJ, Hota B, Hayes R, Weinstein RA, Hayden MK (2010) Daily skin cleansing with chlorhexidine did not reduce the rate of central-line associated bloodstream infection in a surgical intensive care unit. Intensive Care Med 36(5):854–858

    Article  CAS  PubMed  Google Scholar 

  307. Dissemond J, Gerber V, Kramer A et al (2009) Praxisorientierte Expertenempfehlung zur Behandlung kritisch kolonisierter und lokal infizierter Wunden mit Polihexanid. Wundmanagement 14(1):62–68

    Google Scholar 

  308. Seguin P, Laviolle B, Isslame S, Coue A, Malledant Y (2010) Effectiveness of simple daily sensitization of physicians to the duration of central venous and urinary tract catheterization. Intensive Care Med 36(7):1202–1206

    Article  PubMed  Google Scholar 

  309. Tejedor SC, Tong D, Stein J et al (2012) Temporary central venous catheter utilization patterns in a large tertiary care center: tracking the „idle central venous catheter“. Infect Control Hosp Epidemiol 33(1):50–57

    Article  PubMed  Google Scholar 

  310. Rotz S, Sopirala MM (2012) Assessment beyond central line bundle: audits for line necessity in infected central lines in a surgical intensive care unit. Am J Infect Control 40(1):88–89

    Article  PubMed  Google Scholar 

  311. Cload B, Day AG, Ilan R (2010) Evaluation of unnecessary central venous catheters in critically ill patients: a prospective observational study. Can J Anaesth 57(9):830–835

    Article  PubMed  Google Scholar 

  312. O'Grady NP, Barie PS, Bartlett JG et al (2008) Guidelines for evaluation of new fever in critically ill adult patients: 2008 update from the American College of Critical Care Medicine and the Infectious Diseases Society of America. Crit Care Med 36(4):1330–1349

    Article  PubMed  Google Scholar 

  313. Chen XX, Lo YC, Su LH, Chang CL (2015) Investigation of the case numbers of catheter-related bloodstream infection overestimated by the central line-associated bloodstream infection surveillance definition. J Microbiol Immunol Infect 48(6):625–631

    Article  CAS  PubMed  Google Scholar 

  314. Rijnders BJ, Peetermans WE, Verwaest C, Wilmer A, Van Wijngaerden E (2004) Watchful waiting versus immediate catheter removal in ICU patients with suspected catheter-related infection: a randomized trial. Intensive Care Med 30(6):1073–1080

    Article  PubMed  Google Scholar 

  315. Cook D, Randolph A, Kernerman P et al (1997) Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med 25(8):1417–1424

    Article  CAS  PubMed  Google Scholar 

  316. Rupp SM, Apfelbaum JL, Blitt C et al (2012) Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology 116(3):539–573

    Article  PubMed  Google Scholar 

  317. Garcia-Teresa MA, Casado-Flores J, Delgado Dominguez MA et al (2007) Infectious complications of percutaneous central venous catheterization in pediatric patients: a Spanish multicenter study. Intensive Care Med 33(3):466–476

    Article  PubMed  Google Scholar 

  318. Safdar N, Kluger DM, Maki DG (2002) A review of risk factors for catheter-related bloodstream infection caused by percutaneously inserted, noncuffed central venous catheters: implications for preventive strategies. Medicine (Baltimore) 81(6):466–479

    Article  Google Scholar 

  319. Castelli GP, Pognani C, Stuani A, Cita M, Paladini R (2007) Central venous catheter replacement in the ICU: new site versus guidewire exchange. Minerva Anestesiol 73(5):267–273

    CAS  PubMed  Google Scholar 

  320. Rey C, Alvarez F, De-La-Rua V et al (2011) Intervention to reduce catheter-related bloodstream infections in a pediatric intensive care unit. Intensive Care Med 37(4):678–685

    Article  PubMed  Google Scholar 

  321. Chaftari AM, Kassis C, El Issa H et al (2011) Novel approach using antimicrobial catheters to improve the management of central line-associated bloodstream infections in cancer patients. Cancer 117(11):2551–2558

    Article  PubMed  Google Scholar 

  322. Lai NM, Chaiyakunapruk N, Lai NA, O'Riordan E, Pau WS, Saint S (2013) Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst Rev 6:CD007878

    Google Scholar 

  323. Darouiche RO, Raad II, Heard SO et al (1999) A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med 340(1):1–8

    Article  CAS  PubMed  Google Scholar 

  324. Rupp ME, Lisco SJ, Lipsett PA et al (2005) Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: a randomized, controlled trial. Ann Intern Med 143(8):570–580

    Article  CAS  PubMed  Google Scholar 

  325. Wang H, Huang T, Jing J et al (2010) Effectiveness of different central venous catheters for catheter-related infections: a network meta-analysis. J Hosp Infect 76(1):1–11

    Article  CAS  PubMed  Google Scholar 

  326. Falagas ME, Fragoulis K, Bliziotis IA, Chatzinikolaou I (2007) Rifampicin-impregnated central venous catheters: a meta-analysis of randomized controlled trials. J Antimicrob Chemother 59(3):359–369

    Article  CAS  PubMed  Google Scholar 

  327. Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36(5):309–332

    Article  PubMed  Google Scholar 

  328. Ramos ER, Reitzel R, Jiang Y et al (2011) Clinical effectiveness and risk of emerging resistance associated with prolonged use of antibiotic-impregnated catheters: more than 0.5 million catheter days and 7 years of clinical experience. Crit Care Med 39(2):245–251

    Article  PubMed  Google Scholar 

  329. Raad I, Darouiche R, Dupuis J et al (1997) Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med 127(4):267–274

    Article  CAS  PubMed  Google Scholar 

  330. Raad I, Mohamed JA, Reitzel RA et al (2012) Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob Agents Chemother 56(2):935–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Lorente L, Lecuona M, Jimenez A et al (2014) Chlorhexidine-silver sulfadiazine-impregnated venous catheters save costs. Am J Infect Control 42(3):321–324

    Article  CAS  PubMed  Google Scholar 

  332. Lorente L, Lecuona M, Ramos MJ, Jimenez A, Mora ML, Sierra A (2012) Rifampicin-miconazole-impregnated catheters save cost in jugular venous sites with tracheostomy. Eur J Clin Microbiol Infect Dis 31(8):1833–1836

    Article  CAS  PubMed  Google Scholar 

  333. Armstrong SD, Thomas W, Neaman KC, Ford RD, Paulson J (2013) The impact of antibiotic impregnated PICC lines on the incidence of bacteremia in a regional burn center. Burns 39(4):632–635

    Article  PubMed  Google Scholar 

  334. Chelliah A, Heydon KH, Zaoutis TE et al (2007) Observational trial of antibiotic-coated central venous catheters in critically ill pediatric patients. Pediatr Infect Dis J 26(9):816–820

    Article  PubMed  Google Scholar 

  335. Cherry-Bukowiec JR, Denchev K, Dickinson S et al (2011) Prevention of catheter-related blood stream infection: back to basics? Surg Infect (Larchmt) 12(1):27–32

    Article  Google Scholar 

  336. Oto J, Imanaka H, Konno M, Nakataki E, Nishimura M (2011) A prospective clinical trial on prevention of catheter contamination using the hub protection cap for needleless injection device. Am J Infect Control 39(4):309–313

    Article  PubMed  Google Scholar 

  337. Casey AL, Worthington T, Lambert PA, Quinn D, Faroqui MH, Elliott TS (2003) A randomized, prospective clinical trial to assess the potential infection risk associated with the PosiFlow needleless connector. J Hosp Infect 54(4):288–293

    Article  CAS  PubMed  Google Scholar 

  338. Yebenes JC, Serra-Prat M (2008) Clinical use of disinfectable needle-free connectors. Am J Infect Control 36(10):S17.e1–S17.e4

    Article  Google Scholar 

  339. Kellerman S, Shay DK, Howard J et al (1996) Bloodstream infections in home infusion patients: the influence of race and needleless intravascular access devices. J Pediatr 129(5):711–717

    Article  CAS  PubMed  Google Scholar 

  340. Rupp ME, Sholtz LA, Jourdan DR et al (2007) Outbreak of bloodstream infection temporally associated with the use of an intravascular needleless valve. Clin Infect Dis 44(11):1408–1414

    Article  PubMed  Google Scholar 

  341. Wheeler DS, Giaccone M, Hutchinson N et al (2012) An unexpected increase in catheter-associated bloodstream infections at a children's hospital following introduction of the Spiros closed male connector. Am J Infect Control 40(1):48–50

    Article  PubMed  Google Scholar 

  342. Cookson ST, Ihrig M, O'Mara EM et al (1998) Increased bloodstream infection rates in surgical patients associated with variation from recommended use and care following implementation of a needleless device. Infect Control Hosp Epidemiol 19(1):23–27

    Article  CAS  PubMed  Google Scholar 

  343. Maragakis LL, Bradley KL, Song X et al (2006) Increased catheter-related bloodstream infection rates after the introduction of a new mechanical valve intravenous access port. Infect Control Hosp Epidemiol 27(1):67–70

    Article  PubMed  Google Scholar 

  344. McKee C, Berkowitz I, Cosgrove SE et al (2008) Reduction of catheter-associated bloodstream infections in pediatric patients: experimentation and reality. Pediatr Crit Care Med 9(1):40–46

    Article  PubMed  Google Scholar 

  345. Bouza E, Munoz P, Lopez-Rodriguez J et al (2003) A needleless closed system device (CLAVE) protects from intravascular catheter tip and hub colonization: a prospective randomized study. J Hosp Infect 54(4):279–287

    Article  CAS  PubMed  Google Scholar 

  346. Esteve F, Pujol M, Limon E et al (2007) Bloodstream infection related to catheter connections: a prospective trial of two connection systems. J Hosp Infect 67(1):30–34

    Article  CAS  PubMed  Google Scholar 

  347. Ishizuka M, Nagata H, Takagi K, Kubota K (2013) Needleless closed system does not reduce central venous catheter-related bloodstream infection: a retrospective study. Int Surg 98(1):88–93

    Article  PubMed  PubMed Central  Google Scholar 

  348. Btaiche IF, Kovacevich DS, Khalidi N, Papke LF (2011) The effects of needleless connectors on catheter-related bloodstream infections. Am J Infect Control 39(4):277–283

    Article  PubMed  Google Scholar 

  349. Niel-Weise BS, Daha TJ, van den Broek PJ (2006) Is there evidence for recommending needleless closed catheter access systems in guidelines? A systematic review of randomized controlled trials. J Hosp Infect 62(4):406–413

    Article  CAS  PubMed  Google Scholar 

  350. Yebenes JC, Vidaur L, Serra-Prat M et al (2004) Prevention of catheter-related bloodstream infection in critically ill patients using a disinfectable, needle-free connector: a randomized controlled trial. Am J Infect Control 32(5):291–295

    Article  PubMed  Google Scholar 

  351. Field K, McFarlane C, Cheng AC et al (2007) Incidence of catheter-related bloodstream infection among patients with a needleless, mechanical valve-based intravenous connector in an Australian hematology-oncology unit. Infect Control Hosp Epidemiol 28(5):610–613

    Article  PubMed  Google Scholar 

  352. Salgado CD, Chinnes L, Paczesny TH, Cantey JR (2007) Increased rate of catheter-related bloodstream infection associated with use of a needleless mechanical valve device at a long-term acute care hospital. Infect Control Hosp Epidemiol 28(6):684–688

    Article  PubMed  Google Scholar 

  353. Jarvis WR, Murphy C, Hall KK et al (2009) Health care-associated bloodstream infections associated with negative- or positive-pressure or displacement mechanical valve needleless connectors. Clin Infect Dis 49(12):1821–1827

    Article  PubMed  Google Scholar 

  354. Danzig LE, Short LJ, Collins K et al (1995) Bloodstream infections associated with a needleless intravenous infusion system in patients receiving home infusion therapy. JAMA 273(23):1862–1864

    Article  CAS  PubMed  Google Scholar 

  355. Do AN, Ray BJ, Banerjee SN et al (1999) Bloodstream infection associated with needleless device use and the importance of infection-control practices in the home health care setting. J Infect Dis 179(2):442–448

    Article  CAS  PubMed  Google Scholar 

  356. Edgar KJ (2009) Does the evidence support the SHEA-IDSA recommendation on the use of positive-pressure mechanical valves? Infect Control Hosp Epidemiol 30(4):402–403

    Article  PubMed  Google Scholar 

  357. Curran E (2016) Outbreak column 19: needleless connectors (NCs) tales from nine outbreaks. J Infect Prev 17(5):241–247

    Article  PubMed  PubMed Central  Google Scholar 

  358. Food and Drug Administration (FDA) (2010) Positive displacement Needleless connectors and bloodstream infections. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm221988.htm. Zugegriffen: 6 Dez 2016

    Google Scholar 

  359. Casey A, Karpanen T, Nightingale P, Elliott T (2015) An in vitro comparison of microbial ingress into 8 different needleless IV access devices. J Infus Nurs 38(1):18–25

    Article  PubMed  Google Scholar 

  360. Harnage S (2012) Seven years of zero central-line-associated bloodstream infections. Br J Nurs 21(21):S6

    Article  PubMed  Google Scholar 

  361. Adams D, Karpanen T, Worthington T, Lambert P, Elliott TS (2006) Infection risk associated with a closed luer access device. J Hosp Infect 62(3):353–357

    Article  CAS  PubMed  Google Scholar 

  362. Hong H, Morrow DF, Sandora TJ, Priebe GP (2013) Disinfection of needleless connectors with chlorhexidine-alcohol provides long-lasting residual disinfectant activity. Am J Infect Control 41(8):e77–e79

    Article  PubMed  Google Scholar 

  363. Trautmann M, Kreutzberger M, Bobic R, Regnath T (2012) Disinfection of a needleless connector with alcohol-based disinfectant wipes – an experimental study. Hyg Med 37(9):354–359

    Google Scholar 

  364. Trautmann M, Moosbauer S, Schmitz FJ, Lepper PM (2004) Experimental study on the safety of a new connecting device. Am J Infect Control 32(5):296–300

    Article  PubMed  Google Scholar 

  365. Simmons S, Bryson C, Porter S (2011) „Scrub the hub“: cleaning duration and reduction in bacterial load on central venous catheters. Crit Care Nurs Q 34(1):31–35

    Article  PubMed  Google Scholar 

  366. Casey AL, Karpanen TJ, Nightingale P, Cook M, Elliott TS (2012) Microbiological comparison of a silver-coated and a non-coated needleless intravascular connector in clinical use. J Hosp Infect 80(4):299–303

    Article  CAS  PubMed  Google Scholar 

  367. Linares J, Sitges-Serra A, Garau J, Perez JL, Martin R (1985) Pathogenesis of catheter sepsis: a prospective study with quantitative and semiquantitative cultures of catheter hub and segments. J Clin Microbiol 21(3):357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  368. Lockman JL, Heitmiller ES, Ascenzi JA, Berkowitz I (2011) Scrub the hub! Catheter needleless port decontamination. Anesthesiology 114(4):958

    Article  PubMed  Google Scholar 

  369. Sitges-Serra A, Hernandez R, Maestro S, Pi-Suner T, Garces JM, Segura M (1997) Prevention of catheter sepsis: the hub. Nutrition 13(4 Suppl):30S–35S

    Article  CAS  PubMed  Google Scholar 

  370. Sitges-Serra A, Puig P, Linares J et al (1984) Hub colonization as the initial step in an outbreak of catheter-related sepsis due to coagulase negative staphylococci during parenteral nutrition. JPEN J Parenter Enteral Nutr 8(6):668–672

    Article  CAS  PubMed  Google Scholar 

  371. Oto J, Nishimura M, Morimatsu H et al (2007) Comparison of contamination between conventional three-way stopcock and needleless injection device: a randomized controlled trial. Med Sci Monit 13(10):CR417–CR421

    PubMed  Google Scholar 

  372. Moureau NL, Flynn J (2015) Disinfection of needleless connector hubs: clinical evidence systematic review. Nurs Res Pract 2015:796762

    PubMed  PubMed Central  Google Scholar 

  373. Macias AE, Munoz JM, Herrera LE et al (2004) Nosocomial pediatric bacteremia: the role of intravenous set contamination in developing countries. Infect Control Hosp Epidemiol 25(3):226–230

    Article  PubMed  Google Scholar 

  374. Mahieu LM, De Dooy JJ, De Muynck AO, Van Melckebeke G, Ieven MM, Van Reempts PJ (2001) Microbiology and risk factors for catheter exit-site and -hub colonization in neonatal intensive care unit patients. Infect Control Hosp Epidemiol 22(6):357–362

    Article  CAS  PubMed  Google Scholar 

  375. Mahieu LM, De Dooy JJ, Lenaerts AE, Ieven MM, De Muynck AO (2001) Catheter manipulations and the risk of catheter-associated bloodstream infection in neonatal intensive care unit patients. J Hosp Infect 48(1):20–26

    Article  CAS  PubMed  Google Scholar 

  376. Rupp ME, Yu S, Huerta T et al (2012) Adequate disinfection of a split-septum needleless intravascular connector with a 5-second alcohol scrub. Infect Control Hosp Epidemiol 33(7):661–665

    Article  PubMed  Google Scholar 

  377. Kaler W, Chinn R (2007) Successful disinfection of needleless access ports: a matter of time and friction. J Assoc Vasc Access 12(3):140–142

    Article  Google Scholar 

  378. Casey AL, Lambert PA, Elliott TS (2006) Is there evidence for recommending needleless closed catheter access systems in guidelines? J Hosp Infect 64(4):405–406

    Article  CAS  PubMed  Google Scholar 

  379. Kuriakose S, Grüter B, Exner M, Gemein S, Gebel J (2015) Evaluierung der mikrobiellen Dichtigkeit von Closed System Transfer Devices am Beispiel eines nadelfreien Ventilkonnektors. Hyg Med 40(7/8):236–240

    Google Scholar 

  380. Menyhay SZ, Maki DG (2006) Disinfection of needleless catheter connectors and access ports with alcohol may not prevent microbial entry: the promise of a novel antiseptic-barrier cap. Infect Control Hosp Epidemiol 27(1):23–27

    Article  PubMed  Google Scholar 

  381. Menyhay SZ, Maki DG (2008) Preventing central venous catheter-associated bloodstream infections: development of an antiseptic barrier cap for needleless connectors. Am J Infect Control 36(10):S174.e1–S174.e5

    Article  Google Scholar 

  382. Engelhart S, Exner M, Simon A (2015) In vitro study on the disinfectability of two split-septum needle-free connection devices using different disinfection procedures. GMS Hyg Infect Control 10:Doc17

    PubMed  PubMed Central  Google Scholar 

  383. Simon A, Trautmann M (2008) [Needleless connection valves-commentary from a clinical perspective]. Dtsch Med Wochenschr 133(5):206–208

    Article  CAS  PubMed  Google Scholar 

  384. Salzman MB, Isenberg HD, Rubin LG (1993) Use of disinfectants to reduce microbial contamination of hubs of vascular catheters. J Clin Microbiol 31(3):475–479

    CAS  PubMed  PubMed Central  Google Scholar 

  385. Salzman MB, Isenberg HD, Shapiro JF, Lipsitz PJ, Rubin LG (1993) A prospective study of the catheter hub as the portal of entry for microorganisms causing catheter-related sepsis in neonates. J Infect Dis 167(2):487–490

    Article  CAS  PubMed  Google Scholar 

  386. Salzman MB, Rubin LG (1997) Relevance of the catheter hub as a portal for microorganisms causing catheter-related bloodstream infections. Nutrition 13(4 Suppl):15S–17S

    Article  CAS  PubMed  Google Scholar 

  387. Holroyd JL, Paulus DA, Rand KH, Enneking FK, Morey TE, Rice MJ (2014) Universal intravenous access cleaning device fails to sterilize stopcocks. Anesth Analg 118(2):333–343

    Article  CAS  PubMed  Google Scholar 

  388. Sannoh S, Clones B, Munoz J, Montecalvo M, Parvez B (2010) A multimodal approach to central venous catheter hub care can decrease catheter-related bloodstream infection. Am J Infect Control 38(6):424–429

    Article  PubMed  Google Scholar 

  389. Soothill JS, Bravery K, Ho A, Macqueen S, Collins J, Lock P (2009) A fall in bloodstream infections followed a change to 2 % chlorhexidine in 70 % isopropanol for catheter connection antisepsis: a pediatric single center before/after study on a hemopoietic stem cell transplant ward. Am J Infect Control 37(8):626–630

    Article  PubMed  Google Scholar 

  390. Loftus RW, Brindeiro BS, Kispert DP et al (2012) Reduction in intraoperative bacterial contamination of peripheral intravenous tubing through the use of a passive catheter care system. Anesth Analg 115(6):1315–1323

    Article  PubMed  Google Scholar 

  391. Loftus RW, Patel HM, Huysman BC et al (2012) Prevention of intravenous bacterial injection from health care provider hands: the importance of catheter design and handling. Anesth Analg 115(5):1109–1119

    Article  PubMed  Google Scholar 

  392. Munoz-Price LS, Dezfulian C, Wyckoff M et al (2012) Effectiveness of stepwise interventions targeted to decrease central catheter-associated bloodstream infections. Crit Care Med 40(5):1464–1469

    Article  PubMed  Google Scholar 

  393. Horvath B, Norville R, Lee D, Hyde A, Gregurich M, Hockenberry M (2009) Reducing central venous catheter-related bloodstream infections in children with cancer. Oncol Nurs Forum 36(2):232–238

    Article  PubMed  Google Scholar 

  394. Bishay M, Retrosi G, Horn V et al (2011) Chlorhexidine antisepsis significantly reduces the incidence of sepsis and septicemia during parenteral nutrition in surgical infants. J Pediatr Surg 46(6):1064–1069

    Article  PubMed  Google Scholar 

  395. Smith JS, Kirksey KM, Becker H, Brown A (2011) Autonomy and self-efficacy as influencing factors in nurses' behavioral intention to disinfect needleless intravenous systems. J Infus Nurs 34(3):193–200

    Article  PubMed  Google Scholar 

  396. Saint S, Kowalski CP, Banaszak-Holl J, Forman J, Damschroder L, Krein SL (2009) How active resisters and organizational constipators affect health care-acquired infection prevention efforts. Jt Comm J Qual Patient Saf 35(5):239–246

    Article  PubMed  Google Scholar 

  397. Buchman AL, Spapperi J, Leopold P (2009) A new central venous catheter cap: decreased microbial growth and risk for catheter-related bloodstream infection. J Vasc Access 10(1):11–21

    Article  CAS  PubMed  Google Scholar 

  398. Maki DG (2010) In vitro studies of a novel antimicrobial luer-activated needleless connector for prevention of catheter-related bloodstream infection. Clin Infect Dis 50(12):1580–1587

    Article  PubMed  Google Scholar 

  399. Sweet MA, Cumpston A, Briggs F, Craig M, Hamadani M (2012) Impact of alcohol-impregnated port protectors and needleless neutral pressure connectors on central line-associated bloodstream infections and contamination of blood cultures in an inpatient oncology unit. Am J Infect Control 40(10):931–934

    Article  PubMed  Google Scholar 

  400. Wright MO, Hebden JN, Allen-Bridson K, Morrell GC, Horan T (2010) Healthcare-associated infections studies project: an American Journal of Infection Control and National Healthcare Safety Network data quality collaboration. Am J Infect Control 38(5):416–418

    Article  PubMed  Google Scholar 

  401. Gillies D, O'Riordan L, Wallen M, Morrison A, Rankin K, Nagy S (2005) Optimal timing for intravenous administration set replacement. Cochrane Database Syst Rev 4:CD003588

    Google Scholar 

  402. Ullman AJ, Cooke ML, Gillies D et al (2013) Optimal timing for intravascular administration set replacement. Cochrane Database Syst Rev 9:CD003588

    Google Scholar 

  403. Matlow AG, Kitai I, Kirpalani H et al (1999) A randomized trial of 72- versus 24-hour intravenous tubing set changes in newborns receiving lipid therapy. Infect Control Hosp Epidemiol 20(7):487–493

    Article  CAS  PubMed  Google Scholar 

  404. Robert Koch-Institut (2016) Zu spezifischen Fragen bezüglich Rekonstitution, Zubereitung und Applikation von Arzneimitteln und Infusionslösungen sowie zur Hautantiseptik – Bericht der Arbeitsgruppe KRINKO-BfArM-RKI. Epid Bull 20:173–178

    Google Scholar 

  405. Bhakdi S, Kramer I, Siegel E, Jansen B, Exner M (2012) Use of quantitative microbiological analyses to trace origin of contamination of parenteral nutrition solutions. Med Microbiol Immunol 201(2):231–237

    Article  PubMed  Google Scholar 

  406. Raad I, Hanna HA, Awad A et al (2001) Optimal frequency of changing intravenous administration sets: is it safe to prolong use beyond 72 hours? Infect Control Hosp Epidemiol 22(3):136–139

    Article  CAS  PubMed  Google Scholar 

  407. Simon A, Fleischhack G, Wiszniewsky G, Hasan C, Bode U, Kramer MH (2006) Influence of prolonged use of intravenous administration sets in paediatric cancer patients on CVAD-related bloodstream infection rates and hospital resources. Infection 34(5):258–263

    Article  CAS  PubMed  Google Scholar 

  408. Macias AE, de Leon SP, Huertas M et al (2008) Endemic infusate contamination and related bacteremia. Am J Infect Control 36(1):48–53

    Article  PubMed  Google Scholar 

  409. Macias AE, Huertas M, de Leon SP et al (2010) Contamination of intravenous fluids: a continuing cause of hospital bacteremia. Am J Infect Control 38(3):217–221

    Article  CAS  PubMed  Google Scholar 

  410. Pan A, Dolcetti L, Barosi C et al (2006) An outbreak of Serratia marcescens bloodstream infections associated with misuse of drug vials in a surgical ward. Infect Control Hosp Epidemiol 27(1):79–82

    Article  PubMed  Google Scholar 

  411. Herbig S, Kaiser V, Maurer J, Taylor L, Thiesen J, Krämer I (2013) ADKA-Leitlinie: Aseptische Herstellung und Prüfung applikationsfertiger Parenteralia. Krankenhauspharmazie 34(2):93–106

    Google Scholar 

  412. Council of Europe, Committee of Ministers (2009) Resolution CM/ResAP(2011)1 on quality and safety assurance requirements for medicinal products prepared in pharmacies for the special needs of patients. In: European Directorate for the Quality of Medicines & HealthCare (EDQM) (Hrsg) Expert Workshop. Promoting standards for the quality and safety assurance of pharmacy-prepared medicinal products for the needs of patients. Proceedings. , Strasbourg, S 84–97

    Google Scholar 

  413. Apothekenbetriebsordnung in der Fassung der Bekanntmachung vom 26. September 1995 (BGBl. I S. 1195), die zuletzt durch Artikel 2a der Verordnung vom 6. März 2015 (BGBl. I S.  ) geändert worden ist. URL: http://www.gesetze-im-internet.de/apobetro_1987/

  414. Pharmaceutical Inspection Convention, Pharmaceutical Inspection Cooperation Scheme (Hrsg) (2014) PIC/S PE 010-4: PIC/S Guide to Good Manufacturing Practices of preparation of medicinal products in healthcare establishments

    Google Scholar 

  415. Rangel-Frausto MS, Higuera-Ramirez F, Martinez-Soto J, Rosenthal VD (2010) Should we use closed or open infusion containers for prevention of bloodstream infections? Ann Clin Microbiol Antimicrob 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  416. Franzetti F, Borghi B, Raimondi F, Rosenthal VD (2009) Impact on rates and time to first central vascular-associated bloodstream infection when switching from open to closed intravenous infusion containers in a hospital setting. Epidemiol Infect 137(7):1041–1048

    Article  CAS  PubMed  Google Scholar 

  417. Maki DG, Rosenthal VD, Salomao R, Franzetti F, Rangel-Frausto MS (2011) Impact of switching from an open to a closed infusion system on rates of central line-associated bloodstream infection: a meta-analysis of time-sequence cohort studies in 4 countries. Infect Control Hosp Epidemiol 32(1):50–58

    Article  PubMed  Google Scholar 

  418. Lopez-Briz E, Ruiz-Garcia V (2005) [Effectiveness of heparin versus NaCl 0.9 % in central venous catheter flushing. A systematic review]. Farm Hosp 29(4):258–264

    Article  CAS  PubMed  Google Scholar 

  419. Bertoglio S, Rezzo R, Merlo FD et al (2013) Pre-filled normal saline syringes to reduce totally implantable venous access device-associated bloodstream infection: a single institution pilot study. J Hosp Infect 84(1):85–88

    Article  CAS  PubMed  Google Scholar 

  420. Wiersma P, Schillie S, Keyserling H et al (2010) Catheter-related polymicrobial bloodstream infections among pediatric bone marrow transplant outpatients – Atlanta, Georgia, 2007. Infect Control Hosp Epidemiol 31(5):522–527

    Article  PubMed  Google Scholar 

  421. Krafte-Jacobs B, Sivit CJ, Mejia R, Pollack MM (1995) Catheter-related thrombosis in critically ill children: comparison of catheters with and without heparin bonding. J Pediatr 126(1):50–54

    Article  CAS  PubMed  Google Scholar 

  422. Abdelkefi A, Achour W, Ben Othman T et al (2007) Use of heparin-coated central venous lines to prevent catheter-related bloodstream infection. J Support Oncol 5(6):273–278

    PubMed  Google Scholar 

  423. Abdelkefi A, Torjman L, Ladeb S et al (2005) Randomized trial of prevention of catheter-related bloodstream infection by continuous infusion of low-dose unfractionated heparin in patients with hematologic and oncologic disease. J Clin Oncol 23(31):7864–7870

    Article  PubMed  CAS  Google Scholar 

  424. Jack T, Boehne M, Brent BE et al (2012) In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med 38(6):1008–1016

    Article  PubMed  PubMed Central  Google Scholar 

  425. Jack T, Brent BE, Boehne M et al (2010) Analysis of particulate contaminations of infusion solutions in a pediatric intensive care unit. Intensive Care Med 36(4):707–711

    Article  PubMed  PubMed Central  Google Scholar 

  426. Goldstein B, Giroir B, Randolph A (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6(1):2–8

    Article  PubMed  Google Scholar 

  427. Robinson JL, Tawfik G, Saxinger L, Stang L, Etches W, Lee B (2005) Stability of heparin and physical compatibility of heparin/antibiotic solutions in concentrations appropriate for antibiotic lock therapy. J Antimicrob Chemother 56(5):951–953

    Article  CAS  PubMed  Google Scholar 

  428. Droste JC, Jeraj HA, MacDonald A, Farrington K (2003) Stability and in vitro efficacy of antibiotic-heparin lock solutions potentially useful for treatment of central venous catheter-related sepsis. J Antimicrob Chemother 51(4):849–855

    Article  CAS  PubMed  Google Scholar 

  429. Segarra-Newnham M, Martin-Cooper EM (2005) Antibiotic lock technique: a review of the literature. Ann Pharmacother 39(2):311–318

    Article  PubMed  Google Scholar 

  430. Safdar N, Maki DG (2006) Use of vancomycin-containing lock or flush solutions for prevention of bloodstream infection associated with central venous access devices: a meta-analysis of prospective, randomized trials. Clin Infect Dis 43(4):474–484

    Article  PubMed  Google Scholar 

  431. Yahav D, Rozen-Zvi B, Gafter-Gvili A, Leibovici L, Gafter U, Paul M (2008) Antimicrobial lock solutions for the prevention of infections associated with intravascular catheters in patients undergoing hemodialysis: systematic review and meta-analysis of randomized, controlled trials. Clin Infect Dis 47(1):83–93

    Article  PubMed  Google Scholar 

  432. Snaterse M, Ruger W, Scholte Op RWJ, Lucas C (2010) Antibiotic-based catheter lock solutions for prevention of catheter-related bloodstream infection: a systematic review of randomised controlled trials. J Hosp Infect 75(1):1–11

    Article  CAS  PubMed  Google Scholar 

  433. Parra D, Pena-Monje A, Coronado-Alvarez NM, Hernandez-Quero J, Parra-Ruiz J (2015) In vitro efficacy of daptomycin and teicoplanin combined with ethanol, clarithromycin or gentamicin as catheter lock solutions. BMC Microbiol 15:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  434. Aumeran C, Guyot P, Boisnoir M et al (2013) Activity of ethanol and daptomycin lock on biofilm generated by an in vitro dynamic model using real subcutaneous injection ports. Eur J Clin Microbiol Infect Dis 32(2):199–206

    Article  CAS  PubMed  Google Scholar 

  435. Chaudhury A, Rangineni J, Venkatramana B (2012) Catheter lock technique: in vitro efficacy of ethanol for eradication of methicillin-resistant staphylococcal biofilm compared with other agents. FEMS Immunol Med Microbiol 65(2):305–308

    Article  CAS  PubMed  Google Scholar 

  436. Qu Y, Istivan TS, Daley AJ, Rouch DA, Deighton MA (2009) Comparison of various antimicrobial agents as catheter lock solutions: preference for ethanol in eradication of coagulase-negative staphylococcal biofilms. J Med Microbiol 58(Pt 4):442–450

    Article  CAS  PubMed  Google Scholar 

  437. Shah CB, Mittelman MW, Costerton JW et al (2002) Antimicrobial activity of a novel catheter lock solution. Antimicrob Agents Chemother 46(6):1674–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Traub WH, Leonhard B, Bauer D (1993) Taurolidine: in vitro activity against multiple-antibiotic-resistant, nosocomially significant clinical isolates of Staphylococcus aureus, Enterococcus faecium, and diverse Enterobacteriaceae. Chemotherapy 39(5):322–330

    Article  CAS  PubMed  Google Scholar 

  439. Schlicht A, Fleischhack G, Herdeis C, Simon A (2009) In vitro investigation of the exposure time necessary to yield a 5 log reduction of clinicall relevant bacteria by a taurolidine containing antimicrobial catheter lock solution. Hyg Med 34(9):343–345

    Google Scholar 

  440. Solomon LR, Cheesbrough JS, Ebah L et al (2010) A randomized double-blind controlled trial of taurolidine-citrate catheter locks for the prevention of bacteremia in patients treated with hemodialysis. Am J Kidney Dis 55(6):1060–1068

    Article  CAS  PubMed  Google Scholar 

  441. Taylor C, Cahill J, Gerrish M, Little J (2008) A new haemodialysis catheter-locking agent reduces infections in haemodialysis patients. J Ren Care 34(3):116–120

    Article  PubMed  Google Scholar 

  442. Betjes MG, van Agteren M (2004) Prevention of dialysis catheter-related sepsis with a citrate-taurolidine-containing lock solution. Nephrol Dial Transplant 19(6):1546–1551

    Article  CAS  PubMed  Google Scholar 

  443. Allon M (2004) Dialysis catheter-related bacteremia: treatment and prophylaxis. Am J Kidney Dis 44(5):779–791

    Article  PubMed  Google Scholar 

  444. Allon M (2003) Prophylaxis against dialysis catheter-related bacteremia with a novel antimicrobial lock solution. Clin Infect Dis 36(12):1539–1544

    Article  PubMed  Google Scholar 

  445. Quarello F, Forneris G (2002) Prevention of hemodialysis catheter-related bloodstream infection using an antimicrobial lock. Blood Purif 20(1):87–92

    Article  CAS  PubMed  Google Scholar 

  446. Toure A, Lauverjat M, Peraldi C et al (2012) Taurolidine lock solution in the secondary prevention of central venous catheter-associated bloodstream infection in home parenteral nutrition patients. Clin Nutr 31(4):567–570

    Article  CAS  PubMed  Google Scholar 

  447. Chu HP, Brind J, Tomar R, Hill S (2012) Significant reduction in central venous catheter-related bloodstream infections in children on HPN after starting treatment with Taurolidine line lock. J Pediatr Gastroenterol Nutr 55(4):403–407

    Article  CAS  PubMed  Google Scholar 

  448. Wanten GJA, Bisseling TM (2011) Responding letter to editor – Taurolidine lock is highly effective in preventing catheter-related bloodstream infections in patients on home parenteral nutrition: a heparin-controlled prospective trial. Clin Nutr 30(3):401–401

    Article  Google Scholar 

  449. Cullis PS, McKee RF (2011) Taurolidine lock – experience from the West of Scotland. Clin Nutr 30(3):399–400

    Article  PubMed  Google Scholar 

  450. Bisseling TM, Willems MC, Versleijen MW, Hendriks JC, Vissers RK, Wanten GJ (2010) Taurolidine lock is highly effective in preventing catheter-related bloodstream infections in patients on home parenteral nutrition: a heparin-controlled prospective trial. Clin Nutr 29(4):464–468

    Article  CAS  PubMed  Google Scholar 

  451. Jurewitsch B, Jeejeebhoy KN (2005) Taurolidine lock: the key to prevention of recurrent catheter-related bloodstream infections. Clin Nutr 24(3):462–465

    Article  CAS  PubMed  Google Scholar 

  452. Jurewitsch B, Lee T, Park J, Jeejeebhoy K (1998) Taurolidine 2 % as an antimicrobial lock solution for prevention of recurrent catheter-related bloodstream infections. JPEN J Parenter Enteral Nutr 22(4):242–244

    Article  CAS  PubMed  Google Scholar 

  453. Liu H, Liu H, Deng J, Chen L, Yuan L, Wu Y (2014) Preventing catheter-related bacteremia with taurolidine-citrate catheter locks: a systematic review and meta-analysis. Blood Purif 37(3):179–187

    Article  CAS  PubMed  Google Scholar 

  454. Bradshaw JH, Puntis JW (2008) Taurolidine and catheter-related bloodstream infection: a systematic review of the literature. J Pediatr Gastroenterol Nutr 47(2):179–186

    Article  PubMed  Google Scholar 

  455. Zacharioudakis IM, Zervou FN, Arvanitis M, Ziakas PD, Mermel LA, Mylonakis E (2014) Antimicrobial lock solutions as a method to prevent central line-associated bloodstream infections: A meta-analysis of randomized controlled trials. Clin Infect Dis 59(12):1741–1749

    Article  CAS  PubMed  Google Scholar 

  456. Cober MP, Johnson CE (2007) Stability of 70 % alcohol solutions in polypropylene syringes for use in ethanol-lock therapy. Am J Health Syst Pharm 64(23):2480–2482

    Article  CAS  PubMed  Google Scholar 

  457. Chaudhary M, Bilal MF, Du W, Chu R, Rajpurkar M, McGrath EJ (2014) The impact of ethanol lock therapy on length of stay and catheter salvage in pediatric catheter-associated bloodstream infection. Clin Pediatr (Phila) 53(11):1069–1076

    Article  Google Scholar 

  458. Pieroni KP, Nespor C, Ng M et al (2013) Evaluation of ethanol lock therapy in pediatric patients on long-term parenteral nutrition. Nutr Clin Pract 28(2):226–231

    Article  PubMed  Google Scholar 

  459. Rajpurkar M, McGrath E, Joyce J, Boldt-MacDonald K, Chitlur M, Lusher J (2014) Therapeutic and prophylactic ethanol lock therapy in patients with bleeding disorders. Haemophilia 20(1):52–57

    Article  CAS  PubMed  Google Scholar 

  460. Vassallo M, Dunais B, Roger PM (2015) Antimicrobial lock therapy in central-line associated bloodstream infections: a systematic review. Infection 43(4):389–398

    Article  CAS  PubMed  Google Scholar 

  461. Handrup MM, Fuursted K, Funch P, Moller JK, Schroder H (2012) Biofilm formation in long-term central venous catheters in children with cancer: a randomized controlled open-labelled trial of taurolidine versus heparin. APMIS 120(10):794–801

    Article  CAS  PubMed  Google Scholar 

  462. Wolf J, Shenep JL, Clifford V, Curtis N, Flynn PM (2013) Ethanol lock therapy in pediatric hematology and oncology. Pediatr Blood Cancer 60(1):18–25

    Article  PubMed  Google Scholar 

  463. Schilcher G, Schlagenhauf A, Schneditz D et al (2013) Ethanol causes protein precipitation – new safety issues for catheter locking techniques. PLOS ONE 8(12):e84869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  464. Oliveira C, Nasr A, Brindle M, Wales PW (2012) Ethanol locks to prevent catheter-related bloodstream infections in parenteral nutrition: a meta-analysis. Pediatrics 129(2):318–329

    Article  PubMed  Google Scholar 

  465. Mermel LA, Alang N (2014) Adverse effects associated with ethanol catheter lock solutions: a systematic review. J Antimicrob Chemother 69(10):2611–2619

    Article  CAS  PubMed  Google Scholar 

  466. Bell AL, Jayaraman R, Vercaigne LM (2006) Effect of ethanol/trisodium citrate lock on the mechanical properties of carbothane hemodialysis catheters. Clin Nephrol 65(5):342–348

    Article  CAS  PubMed  Google Scholar 

  467. Crnich CJ, Halfmann JA, Crone WC, Maki DG (2005) The effects of prolonged ethanol exposure on the mechanical properties of polyurethane and silicone catheters used for intravascular access. Infect Control Hosp Epidemiol 26(8):708–714

    Article  PubMed  Google Scholar 

  468. Mouw E, Chessman K, Lesher A, Tagge E (2008) Use of an ethanol lock to prevent catheter-related infections in children with short bowel syndrome. J Pediatr Surg 43(6):1025–1029

    Article  PubMed  Google Scholar 

  469. Opilla MT, Kirby DF, Edmond MB (2007) Use of ethanol lock therapy to reduce the incidence of catheter-related bloodstream infections in home parenteral nutrition patients. JPEN J Parenter Enteral Nutr 31(4):302–305

    Article  PubMed  Google Scholar 

  470. Wales PW, Kosar C, Carricato M, de Silva N, Lang K, Avitzur Y (2011) Ethanol lock therapy to reduce the incidence of catheter-related bloodstream infections in home parenteral nutrition patients with intestinal failure: preliminary experience. J Pediatr Surg 46(5):951–956

    Article  PubMed  Google Scholar 

  471. Cober MP, Kovacevich DS, Teitelbaum DH (2011) Ethanol-lock therapy for the prevention of central venous access device infections in pediatric patients with intestinal failure. JPEN J Parenter Enteral Nutr 35(1):67–73

    Article  PubMed  Google Scholar 

  472. John BK, Khan MA, Speerhas R et al (2012) Ethanol lock therapy in reducing catheter-related bloodstream infections in adult home parenteral nutrition patients: results of a retrospective study. JPEN J Parenter Enteral Nutr 36(5):603–610

    Article  PubMed  Google Scholar 

  473. Tan M, Lau J, Guglielmo BJ (2014) Ethanol locks in the prevention and treatment of catheter-related bloodstream infections. Ann Pharmacother 48(5):607–615

    Article  PubMed  CAS  Google Scholar 

  474. Perez-Granda MJ, Barrio JM, Munoz P et al (2014) Ethanol Lock therapy (E-Lock) in the prevention of Catheter-Related Bloodstream Infections (CR-BSI) after Major Heart Surgery (MHS): A randomized clinical trial. PLOS ONE 9(3):e91838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  475. Broom JK, Krishnasamy R, Hawley CM, Playford EG, Johnson DW (2012) A randomised controlled trial of Heparin versus EthAnol Lock THerapY for the prevention of Catheter Associated infecTion in Haemodialysis patients – the HEALTHY-CATH trial. BMC Nephrol 13:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  476. Sanders J, Pithie A, Ganly P et al (2008) A prospective double-blind randomized trial comparing intraluminal ethanol with heparinized saline for the prevention of catheter-associated bloodstream infection in immunosuppressed haematology patients. J Antimicrob Chemother 62(4):809–815

    Article  CAS  PubMed  Google Scholar 

  477. Infektionsschutzgesetz vom 20. Juli 2000 (BGBl. I S. 1045), das zuletzt durch Artikel 6a des Gesetzes vom 10. Dezember 2015 (BGBl. I S. 2229) geändert worden ist. URL: http://www.gesetze-im-internet.de/ifsg

  478. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2001) Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention zur Surveillance (Erfassung und Bewertung) von nosokomialen Infektionen (Umsetzung von § 23 IfSG). Vorwort des Robert Koch-Instituts zur Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention zur Surveillance (Erfassung und Bewertung) von nosokomialen Infektionen. Bundesgesundheitsblatt 44(5):523–536

    Article  Google Scholar 

  479. Robert Koch-Institut (RKI) (2013) Surveillance nosokomialer Infektionen sowie die Erfassung von Krankheitserregern mit speziellen Resistenzen und Multiresistenzen. Fortschreibung der Liste der gemäß § 4 Abs. 2 Nr. 2 Buchstabe b in Verbindung mit § 23 Abs. 4 IfSG zu erfassenden nosokomialen Infektionen und Krankheitserreger mit speziellen Resistenzen und Multiresistenzen. Bundesgesundheitsblatt 56(4):580–583

    Article  Google Scholar 

  480. Gastmeier P, Schwab F, Behnke M, Geffers C (2011) Wenige Blutkulturproben – wenige Infektionen. Anaestesist 60(20):902–907

    Article  CAS  Google Scholar 

  481. Lin MY, Hota B, Khan YM et al (2010) Quality of traditional surveillance for public reporting of nosocomial bloodstream infection rates. JAMA 304(18):2035–2041

    Article  CAS  PubMed  Google Scholar 

  482. Niedner MF (2010) The harder you look, the more you find: Catheter-associated bloodstream infection surveillance variability. Am J Infect Control 38(8):585–595

    Article  PubMed  Google Scholar 

  483. Gastmeier P, Sohr D, Schwab F et al (2008) Ten years of KISS: the most important requirements for success. J Hosp Infect 70(Suppl 1):11–16

    Article  PubMed  Google Scholar 

  484. Gastmeier P, Behnke M, Breier AC et al (2012) [Healthcare-associated infection rates: measuring and comparing : Experiences from the German national nosocomial infection surveillance system (KISS) and from other surveillance systems]. Bundesgesundheitsblatt 55(11–12):1363–1369

    Article  CAS  Google Scholar 

  485. Zuschneid I, Rucker G, Schoop R et al (2010) Representativeness of the surveillance data in the intensive care unit component of the German nosocomial infections surveillance system. Infect Control Hosp Epidemiol 31(9):934–938

    Article  PubMed  Google Scholar 

  486. Marschall J (2008) Catheter-associated bloodstream infections: looking outside of the ICU. Am J Infect Control 36(10):S172.e5–S172.e8

    Article  Google Scholar 

  487. Zuschneid I, Schwab F, Geffers C, Ruden H, Gastmeier P (2003) Reducing central venous catheter-associated primary bloodstream infections in intensive care units is possible: data from the German nosocomial infection surveillance system. Infect Control Hosp Epidemiol 24(7):501–505

    Article  PubMed  Google Scholar 

  488. Gastmeier P, Schwab F, Sohr D, Behnke M, Geffers C (2009) Reproducibility of the surveillance effect to decrease nosocomial infection rates. Infect Control Hosp Epidemiol 30(10):993–999

    Article  CAS  PubMed  Google Scholar 

  489. Eckmanns T, Bessert J, Behnke M, Gastmeier P, Ruden H (2006) Compliance with antiseptic hand rub use in intensive care units: the hawthorne effect. Infect Control Hosp Epidemiol 27(9):931–934

    Article  PubMed  Google Scholar 

  490. Hansen S, Schwab F, Schneider S, Sohr D, Gastmeier P, Geffers C (2013) [Deficits in central venous catheter associated bloodstream infection]. Dtsch Med Wochenschr 138(34–35):1711–1716

    CAS  PubMed  Google Scholar 

  491. Hansen S, Schwab F, Behnke M, Geffers C, Gastmeier P (2013) [Compliance with national guidelines for the prevention of central venous catheter-associated-infections in German intensive care units]. Dtsch Med Wochenschr 138(34–35):1706–1710

    CAS  PubMed  Google Scholar 

  492. Hansen S, Schwab F, Behnke M, Gastmeier P, PROHIBIT Consortium (2014) Prävention zentraler Gefäßkatheter-assoziierter Infektionen: Organisationskulturelle Aspekte in deutschen Krankenhäusern. Hyg Med 39(7/8):268–273

    Google Scholar 

  493. De Bono S, Heling G, Borg MA (2014) Organizational culture and its implications for infection prevention and control in healthcare institutions. J Hosp Infect 86(1):1–6

    Article  PubMed  Google Scholar 

  494. Brannigan ET, Murray E, Holmes A (2009) Where does infection control fit into a hospital management structure? J Hosp Infect 73(4):392–396

    Article  CAS  PubMed  Google Scholar 

  495. Griffiths P, Renz A, Hughes J, Rafferty AM (2009) Impact of organisation and management factors on infection control in hospitals: a scoping review. J Hosp Infect 73(1):1–14

    Article  CAS  PubMed  Google Scholar 

  496. Vonberg RP, Groneberg K, Geffers C, Ruden H, Gastmeier P (2005) [Infection control measures in intensive care units: Results of the German Nosocomial Infection Surveillance System (KISS).] Anaesthesist 54(10):975–982

    Article  PubMed  Google Scholar 

  497. Parneix P (2015) How infection control teams can assess their own performance and enhance their prestige using activity and outcome indicators for public reporting. J Hosp Infect 89(4):328–330

    Article  CAS  PubMed  Google Scholar 

  498. Hansen S, Schwab F, Schneider S, Sohr D, Gastmeier P, Geffers C (2014) Time-series analysis to observe the impact of a centrally organized educational intervention on the prevention of central-line-associated bloodstream infections in 32 German intensive care units. J Hosp Infect 87(4):220–226

    Article  CAS  PubMed  Google Scholar 

  499. Gastmeier P, Sohr D, Geffers C, Nassauer A, Daschner F, Ruden H (2000) Are nosocomial infection rates in intensive care units useful benchmark parameters? Infection 28(6):346–350

    Article  CAS  PubMed  Google Scholar 

  500. Gurses AP, Murphy DJ, Martinez EA, Berenholtz SM, Pronovost PJ (2009) A practical tool to identify and eliminate barriers to compliance with evidence-based guidelines. Jt Comm J Qual Patient Saf 35(10):526–532

    Article  PubMed  Google Scholar 

  501. Robert Koch-Institut (2000) Surveillance nosokomialer Infektionen sowie die Erfassung von Erregern mit speziellen Resistenzen und Multiresistenzen (§6 Abs. 3 und §23 Abs. 1 und 2 in Verbindung mit §4 Abs. 2 Nr. 2b IfSG). Rechtliche Voraussetzungen und Umsetzungsempfehlungen. Bundesgesundheitsblatt 43(11):887–890

    Article  Google Scholar 

  502. Zuschneid I, Sohr D, Kohlhase C et al (2002e) Accuracy of nosocomial infection (NI) data from Intensive Care Units (ICUs) within the German Nosocomial Infections Surveillance System. Fifth International Conference of the Hospital Infection Society, Edinburgh, 15–18 September. ,

    Google Scholar 

  503. Zuschneid I, Geffers C, Sohr D et al (2007) Validation of surveillance in the intensive care unit component of the German nosocomial infections surveillance system. Infect Control Hosp Epidemiol 28(4):496–499

    Article  CAS  PubMed  Google Scholar 

  504. Wright SB, Huskins WC, Dokholyan RS, Goldmann DA, Platt R (2003) Administrative databases provide inaccurate data for surveillance of long-term central venous catheter-associated infections. Infect Control Hosp Epidemiol 24(12):946–949

    Article  PubMed  Google Scholar 

  505. Woeltje KF, McMullen KM, Butler AM, Goris AJ, Doherty JA (2011) Electronic surveillance for healthcare-associated central line-associated bloodstream infections outside the intensive care unit. Infect Control Hosp Epidemiol 32(11):1086–1090

    Article  PubMed  Google Scholar 

  506. Aswani MS, Reagan J, Jin L, Pronovost PJ, Goeschel C (2011) Variation in public reporting of central line-associated bloodstream infections by state. Am J Med Qual 26(5):387–395

    Article  PubMed  Google Scholar 

  507. Karch A, Castell S, Schwab F et al (2015) Proposing an empirically justified reference threshold for blood culture sampling rates in intensive care units. J Clin Microbiol 53(2):648–652

    Article  PubMed  PubMed Central  Google Scholar 

  508. Sherertz RJ, Karchmer TB, Palavecino E, Bischoff W (2011) Blood drawn through valved catheter hub connectors carries a significant risk of contamination. Eur J Clin Microbiol Infect Dis 30(12):1571–1577

    Article  CAS  PubMed  Google Scholar 

  509. Gaur AH, Miller MR, Gao C et al (2013) Evaluating application of the national healthcare safety network central line-associated bloodstream infection surveillance definition: a survey of pediatric intensive care and hematology/oncology units. Infect Control Hosp Epidemiol 34(7):663–670

    Article  PubMed  Google Scholar 

  510. Gaur AH, Bundy DG, Gao C et al (2013) Surveillance of hospital-acquired central line-associated bloodstream infections in pediatric hematology-oncology patients: lessons learned, challenges ahead. Infect Control Hosp Epidemiol 34(3):316–320

    Article  PubMed  Google Scholar 

  511. Thompson ND, Yeh LL, Magill SS, Ostroff SM, Fridkin SK (2013) Investigating systematic misclassification of central line-associated bloodstream infection (CLABSI) to secondary bloodstream infection during health care-associated infection reporting. Am J Med Qual 28(1):56–59

    Article  PubMed  Google Scholar 

  512. Casey AL, Mermel LA, Nightingale P, Elliott TS (2008) Antimicrobial central venous catheters in adults: a systematic review and meta-analysis. Lancet Infect Dis 8(12):763–776

    Article  CAS  PubMed  Google Scholar 

  513. Niel-Weise BS, Stijnen T, van den Broek PJ (2007) Anti-infective-treated central venous catheters: a systematic review of randomized controlled trials. Intensive Care Med 33(12):2058–2068

    Article  CAS  PubMed  Google Scholar 

  514. Niel-Weise BS, Stijnen T, van den Broek PJ (2008) Anti-infective-treated central venous catheters for total parenteral nutrition or chemotherapy: a systematic review. J Hosp Infect 69(2):114–123

    Article  CAS  PubMed  Google Scholar 

  515. Gilbert RE, Mok Q, Dwan K et al (2016) Impregnated central venous catheters for prevention of bloodstream infection in children (the CATCH trial): a randomised controlled trial. Lancet 387(10029):1732–1742

    Article  PubMed  Google Scholar 

  516. Randolph AG, Cook DJ, Gonzales CA, Andrew M (1998) Benefit of heparin in peripheral venous and arterial catheters: systematic review and meta-analysis of randomised controlled trials. BMJ 316(7136):969–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Wir bedanken uns bei der interdisziplinären Arbeitsgruppe der KRINKOBundesinstituts für Arzneimittel (BfArM)-RKI (Frau Prof. Dr. B. Gärtner, Frau Prof. Dr. I. Krämer, Herr M. Thanheiser, Frau Dr. A. Stoliaroff-Pepin, Herr Dr. U. Lipke, Fr. S. Matz, Prof. Dr. B. Ruf, Prof. Dr. A. Simon).

Ethics declarations

Interessenkonflikt

Diese Empfehlungen wurden ehrenamtlich und ohne Einflussnahme kommerzieller Interessengruppen im Auftrag der Kommission für Krankenhaushygiene und Infektionsprävention erarbeitet von Christine Geffers, Axel Kramer, Simone Scheithauer, Sebastian Schulz-Stübner, Arne Simon (Leiter der Arbeitsgruppe), Heidemarie Suger-Wiedeck und Matthias Trautmann. Die Empfehlung wurde durch die Arbeitsgruppe vorbereitet und nach ausführlicher Diskussion in der Kommission abgestimmt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prävention von Infektionen, die von Gefäßkathetern ausgehen. Bundesgesundheitsbl 60, 171–206 (2017). https://doi.org/10.1007/s00103-016-2487-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-016-2487-4

Navigation