Skip to main content
Log in

Lactat in der Notfallmedizin

Lactate in emergency medicine

  • Notfallmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Grundlage für alle metabolischen Prozesse im menschlichen Körper ist die Gewinnung und Verstoffwechselung von Energieträgern. Als Endprodukt der anaeroben Glykolyse entsteht Lactat. Dieses dient dem Körper als Substrat für die Gluconeogenese und als oxidierbares Substrat. Infolge einer Vielzahl an Akutereignissen (z. B. Schock, Sepsis, Herz-Kreislauf-Stillstand, Trauma, Krampfanfall, Ischämie, diabetische Ketoacidose, Thiaminmangel, Leberfunktionsstörungen, Intoxikationen) kann eine Hyperlactatämie nachgewiesen werden. Da eine Hyperlactatämie mit erhöhter Mortalität einhergehen kann, ist in der Notfallmedizin einerseits die Fahndung nach der Ursache der Hyperlactatämie ebenso wichtig wie andererseits eine effektive kausale Therapie. Wiederholte Lactatmessungen sind Bestandteil vieler Behandlungsalgorithmen, da die Betrachtung der dynamischen Entwicklung der Blutlactatkonzentrationen helfen kann, den Akutzustand des Patienten und die Effektivität der getroffenen Maßnahmen besser abzuschätzen.

Abstract

The basis of all metabolic processes in the human body is the production and metabolism of carriers of energy. Lactate is the end-product of anaerobic glycolysis. Lactate can serve as a substrate for gluconeogenesis and as an oxidation substrate. Hyperlactatemia can be detected as the result of a multitude of acute events (e.g. shock, sepsis, cardiac arrest, trauma, seizure, ischemia, diabetic ketoacidosis, thiamine deficiency, liver failure and intoxication). Hyperlactatemia can be associated with increased mortality, therefore in emergency medicine the search for the cause of hyperlactatemia is just as important as an effective causal treatment. Repetitive measurements of lactate are components of several treatment algorithms as observation of the dynamic development of blood lactate concentrations can help to make a better assessment of the acute medical condition of the patient and to evaluate the effectiveness of the measures undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Wardi G, Brice J, Correia M et al (2020) Demystifying lactate in the emergency department. Ann Emerg Med 75(2):287–298

    Google Scholar 

  2. Andersen LW, Mackenhauer J, Roberts JC et al (2013) Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc 88(10):1127–1140

    CAS  Google Scholar 

  3. Kraut JA, Madias NE (2014) Lactic acidosis. N Engl J Med 371(24):2309–2319

    Google Scholar 

  4. Levy B (2006) Lactate and shock state. The metabolic view. Curr Opin Crit Care 12(4):315–321

    Google Scholar 

  5. Fall PJ (2005) Lactic acidosis. From sour milk to septic shock. J Intensive Care Med 20(5):255–271

    Google Scholar 

  6. Fuller BM, Dellinger RP (2012) Lactate as a hemodynamic marker in the critically ill. Curr Opin Crit Care 18(3):267–272

    Google Scholar 

  7. Thomas L (2012) Lactat. In: Thomas L (Hrsg) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik, 8. Aufl. Th-Books Verl.-Ges, Frankfurt/Main, S 336–349

    Google Scholar 

  8. Bakker J, Nijsten MW, Jansen TC (2013) Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care 3:12

    Google Scholar 

  9. Löffler G, Müller M (2014) Glucose – Schlüsselmolekül des Kohlenhydratstoffwechsels. In: Heinrich PC, Müller M, Graeve L (Hrsg) Löffler/Petrides Biochemie und Pathobiochemie. Springer, Berlin, Heidelberg, S 183–198

    Google Scholar 

  10. Rassow J (2012) Abbau der Kohlenhydrate zu Pyruvat bzw. Lactat. In: Rassow J, Hauser K, Netzker R et al (Hrsg) Biochemie. Thieme, Stuttgart, S 70–96

    Google Scholar 

  11. Szasz J, Noitz M, Dünser M (2020) Diagnostik der akuten Organischämie: Eine Praxisanleitung für Notfall- und Intensivmediziner (Diagnosing acute organ ischemia: A practical guide for the emergency and intensive care physician). Med Klin Intensivmed Notfmed 115(2):159–172

    Google Scholar 

  12. Michael M, Al Agha S, Bernhard M (2020) Einfach praktisch: Interpretation der Blutgasanalyse. Notfall Rettungsmed. https://doi.org/10.1007/s10049-020-00734-3

    Article  Google Scholar 

  13. Paquet A‑L, Valli V, Philippon A‑L et al (2016) Agreement between arterial and venous lactate in emergency department patients. A prospective study of 157 consecutive patients. Eur J Emerg Med 25(2):92–96

    Google Scholar 

  14. Middleton P, Kelly A‑M, Brown J et al (2006) Agreement between arterial and central venous values for pH, bicarbonate, base excess, and lactate. Emerg Med J 23(8):622–624

    CAS  Google Scholar 

  15. Theusinger OM, Thyes C, Frascarolo P et al (2010) Mismatch of arterial and central venous blood gas analysis during haemorrhage. Eur J Anaesthesiol 27(10):890–896

    Google Scholar 

  16. Graham CA, Leung LY, Lo RS et al (2019) Agreement between capillary and venous lactate in emergency department patients: prospective observational study. BMJ Open 9(4):e26109

    Google Scholar 

  17. Thomas L (Hrsg) (2012) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik, 8. Aufl. Th-Books Verl.-Ges, Frankfurt/Main

    Google Scholar 

  18. de Tymowski C, Soussi S, Depret F et al (2017) On-line plasma lactate concentration monitoring in critically ill patients. Crit Care 21(1):151

    Google Scholar 

  19. Lenkin PI, Smetkin AA, Hussain A et al (2017) Continuous monitoring of lactate using Intravascular microdialysis in high-risk cardiac surgery. A prospective observational study. J Cardiothorac Vasc Anesth 31(1):37–44

    CAS  Google Scholar 

  20. Schierenbeck F, Nijsten MWN, Franco-Cereceda A et al (2014) Introducing intravascular microdialysis for continuous lactate monitoring in patients undergoing cardiac surgery: a prospective observational study. Crit Care 18(2):R56

    Google Scholar 

  21. Knichwitz G (2002) Kann die Laktatkonzentration immer als Hypoxiemarker interpretiert werden? Anasthesiol Intensivmed Notfallmed Schmerzther 37(06):352–356

    CAS  Google Scholar 

  22. Brooks GA (2002) Lactate shuttles in nature. Biochem Soc Trans 30(2):258–264

    CAS  Google Scholar 

  23. Leverve XM, Mustafa I (2002) Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care 6(4):284–285

    Google Scholar 

  24. Wahl HG (2009) Kohlenhydratstoffwechsel. In: Renz H (Hrsg) Praktische Labordiagnostik. Lehrbuch zur Laboratoriumsmedizin, klinischen Chemie und Hämatologie. de Gruyter, Berlin, S 3–30

    Google Scholar 

  25. Renz H (Hrsg) (2009) Praktische Labordiagnostik. Lehrbuch zur Laboratoriumsmedizin, klinischen Chemie und Hämatologie. de Gruyter, Berlin

    Google Scholar 

  26. Bakker J, Postelnicu R, Mukherjee V (2020) Lactate: Where are we now? Crit Care Clin 36(1):115–124

    Google Scholar 

  27. James JH, Luchette FA, McCarter FD et al (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354(9177):505–508

    CAS  Google Scholar 

  28. Garcia-Alvarez M, Marik P, Bellomo R (2014) Sepsis-associated hyperlactatemia. Crit Care 18(5):503

    Google Scholar 

  29. Friedman G, de Backer D, Shahla M et al (1998) Oxygen supply dependency can characterize septic shock. Intensive Care Med 24(2):118–123

    CAS  Google Scholar 

  30. McCarter FD, Evans JA, Luchette FA et al (2000) Concurrent reduction of glycogenolysis, glycolysis, and NA(+)/K(+) pump activity after hemorrhagic shock. Curr Surg 57(6):639

    CAS  Google Scholar 

  31. Luchette FA, Friend LA, Brown CC et al (1998) Increased skeletal muscle Na+, K+-ATPase activity as a cause of increased lactate production after hemorrhagic shock. J Trauma 44(5):796–801 (discussion 801–803)

    CAS  Google Scholar 

  32. Levy B, Desebbe O, Montemont C et al (2008) Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states. Shock 30(4):417–421

    CAS  Google Scholar 

  33. Levy B, Gibot S, Franck P et al (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365(9462):871–875

    CAS  Google Scholar 

  34. Brealey D, Brand M, Hargreaves I et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360(9328):219–223

    CAS  Google Scholar 

  35. Crouser ED, Julian MW, Blaho DV et al (2002) Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med 30(2):276–284

    CAS  Google Scholar 

  36. Schulte Esch AJ (2011) Anästhesie. Intensivmedizin, Notfallmedizin, Schmerztherapie; 232 Tabellen, 4. vollst. überarb. u. erw. Aufl.. Aufl. Thieme, Stuttgart (Duale Reihe)

    Google Scholar 

  37. Mertzlufft F (1995) Laktat versus intramukosaler pCO2 oder pH? (Lactate versus intramucosal pCO2 or pH?). Anasthesiol Intensivmed Notfallmed Schmerzther 30(Suppl 1):S27–S33

    Google Scholar 

  38. Povoas HP, Weil MH, Tang W et al (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118(4):1127–1132

    CAS  Google Scholar 

  39. Vincent J‑L, Quintairos E, Silva A, Couto L et al (2016) The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care 20(1):257

    Google Scholar 

  40. Wrede CE, Reinhart K (2014) Sepsis in der Notfallmedizin. Notfall Rettungsmed 17(8):707–717

    Google Scholar 

  41. Kramer A, Urban N, Döll S et al (2019) Early lactate dynamics in critically ill non-traumatic patients in a resuscitation room of a German emergency department (OBSERvE-Lactate-Study). J Emerg Med 56(2):135–144

    Google Scholar 

  42. Contenti J, Occelli C, Lemoel F et al (2019) Blood lactate measurement within the emergency department: a two-year retrospective analysis. Am J Emerg Med 37(3):401–406

    Google Scholar 

  43. Bernhard M, Döll S, Hartwig T et al (2018) Resuscitation room management of critically ill nontraumatic patients in a German emergency department (OBSERvE-study). Eur J Emerg Med 25(4):e9–e17

    Google Scholar 

  44. Bou Chebl R, El Khuri C, Shami A et al (2017) Serum lactate is an independent predictor of hospital mortality in critically ill patients in the emergency department. A retrospective study. Scand J Trauma Resusc Emerg Med 25(1):69

    Google Scholar 

  45. Oedorf K, Day DE, Lior Y et al (2017) Serum lactate predicts adverse outcomes in emergency department patients with and without infection. West J Emerg Med 18(2):258–266

    Google Scholar 

  46. Park YJ, Kim DH, Kim SC et al (2018) Serum lactate upon emergency department arrival as a predictor of 30-day in-hospital mortality in an unselected population. PLoS ONE 13(1):e190519

    Google Scholar 

  47. Dellinger RP, Carlet JM, Masur H et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32(3):858–873

    Google Scholar 

  48. Levy MM, Evans LE, Rhodes A (2018) The Surviving Sepsis Campaign Bundle: 2018 Update. Crit Care Med 46(6):997–1000

    Google Scholar 

  49. Briegel J, Möhnle P (2019) Surviving Sepsis Campaign Update 2018: das 1‑h-Bundle. Anaesthesist 68(4):204–207

    CAS  Google Scholar 

  50. Dettmer M, Holthaus CV, Fuller BM (2015) The impact of serial lactate monitoring on emergency department resuscitation interventions and clinical outcomes in severe sepsis and septic shock: an observational cohort study. Shock 43(1):55–61

    CAS  Google Scholar 

  51. Jansen TC, van Bommel J, Schoonderbeek FJ et al (2010) Early lactate-guided therapy in intensive care unit patients. Am J Respir Crit Care Med 182(6):752–761

    Google Scholar 

  52. Nguyen HB, Rivers EP, Knoblich BP et al (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32(8):1637–1642

    Google Scholar 

  53. Casserly B, Phillips GS, Schorr C et al (2015) Lactate measurements in sepsis-induced tissue hypoperfusion. Crit Care Med 43(3):567–573

    CAS  Google Scholar 

  54. Ferreruela M, Raurich JM, Ayestarán I et al (2017) Hyperlactatemia in ICU patients. Incidence, causes and associated mortality. J Crit Care 42:200–205

    CAS  Google Scholar 

  55. Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med 45:486–552

    Google Scholar 

  56. Thomas-Rüddel DO, Bauer M (2017) Limited evidence to recommend lactate kinetics-guided therapy. Crit Care 21(1):167

    Google Scholar 

  57. Dezman ZDW, Comer AC, Smith GS et al (2015) Failure to clear elevated lactate predicts 24-hour mortality in trauma patients. J Trauma Acute Care Surg 79(4):580–585

    CAS  Google Scholar 

  58. Okello M, Makobore P, Wangoda R et al (2014) Serum lactate as a predictor of early outcomes among trauma patients in Uganda. Int J Emerg Med 7(1):20

    Google Scholar 

  59. Jones AE (2012) Lactate clearance in the acutely traumatized patient. Anesthesiology 117(6):1162–1164

    Google Scholar 

  60. Lier H, Bernhard M, Hossfeld B (2018) Hypovolämisch-hämorrhagischer Schock (Hypovolemic and hemorrhagic shock). Anaesthesist 67(3):225–244

    CAS  Google Scholar 

  61. Carden R (2015) Lactate = LactHATE. https://www.stemlynsblog.org/lactate-lacthate/. Zugegriffen: 22. Juni 2020

  62. Spahn DR, Bouillon B, Cerny V et al (2019) The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 23(1):98

    Google Scholar 

  63. van Donkelaar CE, Dijkland SA, van den Bergh WM et al (2016) Early circulating lactate and glucose levels after aneurysmal subarachnoid hemorrhage correlate with poor outcome and delayed cerebral ischemia. Crit Care Med 44(5):966–972

    Google Scholar 

  64. Aisiku IP, Chen PR, Truong H et al (2016) Admission serum lactate predicts mortality in aneurysmal subarachnoid hemorrhage. Am J Emerg Med 34(4):708–712

    Google Scholar 

  65. Donnino MW, Andersen LW, Chase M et al (2016) Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med 44(2):360–367

    CAS  Google Scholar 

  66. Holmberg MJ, Moskowitz A, Patel PV et al (2018) Thiamine in septic shock patients with alcohol use disorders: an observational pilot study. J Crit Care 43:61–64

    CAS  Google Scholar 

  67. Marik PE, Khangoora V, Rivera R et al (2017) Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest 151(6):1229–1238

    Google Scholar 

  68. Clair DG, Beach JM (2016) Mesenteric ischemia. N Engl J Med 374(10):959–968

    CAS  Google Scholar 

  69. Hernandez G, Bellomo R, Bakker J (2019) The ten pitfalls of lactate clearance in sepsis. Intensive Care Med 45(1):82–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bernhard.

Ethics declarations

Interessenkonflikt

A. Kramer, S. Al Agha, L. Böhm, M. Michael, K. Schulze-Bosse und M. Bernhard geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramer, A., Al Agha, S., Böhm, L. et al. Lactat in der Notfallmedizin. Anaesthesist 69, 826–834 (2020). https://doi.org/10.1007/s00101-020-00819-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-020-00819-1

Schlüsselwörter

Keywords

Navigation