Skip to main content
Log in

Frühe viskoelastizitätsbasierte Gerinnungstherapie bei blutenden Schwerverletzten

Bericht der Konsensusgruppe über die Konsensuskonferenz 2014 zur Erarbeitung einer S2k-Leitlinie

Early viscoelasticity-based coagulation therapy for severely injured bleeding patients

Report of the consensus group on the consensus conference 2014 for formulation of S2k guidelines

  • Leitlinien und Empfehlungen
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Obwohl es ein stetig wachsendes Interesse am Einsatz viskoelastischer Testverfahren (ROTEM®/TEG®) zur Diagnostik und Therapiesteuerung beim blutenden Schwerverletzten gibt, fehlen bis dato in der Breite akzeptierte Leitlinien, wie diese Verfahren in die klinische Versorgung integriert werden können. Im September 2014 versammelten sich internationale Experten unterschiedlicher und an der Schwerverletztenversorgung beteiligter Fachdisziplinen zu einer zweitägigen Konsensuskonferenz in Philadelphia (USA). Die Expertengruppe war öffentlich und setzte sich zusammen aus Anästhesisten, Unfallchirurgen/Traumatologen, Allgemein-/Abdominalchirurgen, Gefäßchirurgen, Notfall-/Intensivmedizinern, Hämatologen, Transfusionsmedizinern, Labormedizinern sowie Pathobiologen/Pathophysiologen. Neun Fragen in Bezug auf den Einfluss viskoelastischer Testverfahren im Rahmen der frühen Schwerverletztenversorgung wurden im Vorfeld der Konferenz via Konsensus formuliert, literaturtechnisch via Review-Verfahren aufgearbeitet und anschließend im Rahmen der Konferenz im Format standardisierter Vorträge unter Moderation ohne Interessenkonflikt diskutiert. Der frühe Einsatz der Verfahren wurde definiert als Ausgangswert, erhoben innerhalb weniger Minuten nach Schockraumaufnahme, wenn die Ergebnisse der Standardverfahren zur Gerinnungsdiagnostik noch nicht vorliegen. Die Ergebnisse der Konsensuskonferenz wurden in Form eines Berichts zusammengefasst und anschließend im Rahmen eines offenen Forums nochmals abschließend begutachtet. Abgerundet wurde der Prozess durch die Durchführung einer Delphi-Befragung über zwei Runden zur Konsensusfindung innerhalb der Expertengruppe hinsichtlich viskoelastischer Grenzwerte zur Initiierung spezifischer Behandlungen unter Einschluss von Fibrinogen(-Konzentraten), Thrombozytenkonzentraten, Blutplasmaprodukten und Prothrombinkomplexkonzentraten (PPSB). Der vorliegende Bericht fasst die Ergebnisse und Empfehlungen der Konsensuskonferenz zusammen, die nach dem System der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) unter Berücksichtigung von formaler Konsensusfindung, einschließlich Delphi-Methode, einer S2k-Leitlinie entsprechen.

Abstract

Although there is increasing interest in the use of a viscoelastic test procedure (ROTEM®/TEG®) for diagnostics and therapy guidance of severely injured and bleeding patients, currently no uniformly accepted guidelines exist for how this technology should be integrated into clinical treatment. In September 2014 an international multidisciplinary group of opinion leaders in the field of trauma-induced coagulopathy and other disciplines involved in the treatment of severely injured patients were assembled for a 2-day consensus conference in Philadelphia (USA). This panel included trauma/accident surgeons, general/abdominal surgeons, vascular surgeons, emergency/intensive care surgeons, hematologists, transfusion specialists, anesthesiologists, laboratory physicians, pathobiologists/pathophysiologists and the lay public. A total of nine questions regarding the impact of viscoelastic testing in the early treatment of trauma patients were developed prior to the conference by a panel consensus. Early use was defined as baseline viscoelastic test result thresholds obtained within the first minutes of hospital arrival, when conventional laboratory results are not yet available. The available data for each question were then reviewed in person using standardized presentations by the expert panel. A consensus summary document was then developed and reviewed by the panel in an open forum. Finally, a 2-round Delphi poll was administered to the panel of experts regarding viscoelastic thresholds for triggering the initiation of specific treatments including fibrinogen (concentrates), platelet concentrates, blood plasma products and prothrombin complex concentrates (PCC). This report summarizes the findings and recommendations of this consensus conference, which correspond to a S2k guideline according to the system of the Association of the Scientific Medical Societies in Germany (AWMF) and taking formal consensus findings including Delphi methods into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Anderson L, Quasim I, Soutar R, Steven M, Macfie A, Korte W (2006) An audit of red cell and blood product use after the institution of thromboelastometry in a cardiac intensive care unit. Transfus Med 16:31–39

  2. Andreasen JB, Pistor-Riebold TU, Knudsen IH, Ravn HB, Hvas AM (2014) Evaluation of different sized blood sampling tubes for thromboelastometry, platelet function, and platelet count. Clin Chem Lab Med 52:701–706

    Article  CAS  PubMed  Google Scholar 

  3. Bolliger D, Seeberger MD, Tanaka KA (2012) Principles and practice of thromboelastography in clinical coagulation management and transfusion practice. Transfus Med Rev 26:1–13

    Article  PubMed  Google Scholar 

  4. Bolliger D, Szlam F, Molinaro RJ, Rahe-Meyer N, Levy JH, Tanaka KA (2009) Finding the optimal concentration range for fibrinogen replacement after severe haemodilution: an in vitro model. Br J Anaesth 102:793–799

    Article  CAS  PubMed  Google Scholar 

  5. Borgman MA, Spinella PC, Holcomb JB, Blackbourne LH, Wade CE, Lefering R, Bouillon B, Maegele M (2011) The effect of FFP: RBC ratio on morbidity and mortality in trauma patients based on transfusion prediction score. Vox Sang 101:44–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Branco BC, Inaba K, Ives C, Okoye O, Shulman I, David JS, Schochl H, Rhee P, Demetriades D (2014) Thromboelastogram evaluation of the impact of hypercoagulability in trauma patients. Shock 41:200–207

    Article  PubMed  Google Scholar 

  7. Brohi K (2009) Diagnosis and management of coagulopathy after major trauma. Br J Surg 96:963–964

    Article  CAS  PubMed  Google Scholar 

  8. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC, Pittet JF (2008) Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 64:1211–1217. (discussion 1217)

    Article  PubMed  Google Scholar 

  9. Brohi K, Singh J, Heron M, Coats T (2003) Acute traumatic coagulopathy. J Trauma 54:1127–1130

    Article  PubMed  Google Scholar 

  10. Carroll RC, Craft RM, Langdon RJ, Clanton CR, Snider CC, Wellons DD, Dakin PA, Lawson CM, Enderson BL, Kurek SJ (2009) Early evaluation of acute traumatic coagulopathy by thrombelastography. Transl Res 154:34–39

    Article  PubMed  Google Scholar 

  11. Chandler WL, Ferrell C, Trimble S, Moody S (2010) Development of a rapid emergency hemorrhage panel. Transfusion 50:2547–2552

    Article  PubMed  Google Scholar 

  12. Chapman MP, Moore EE, Ramos CR, Ghasabyan A, Harr JN, Chin TL, Stringham JR, Sauaia A, Silliman CC, Banerjee A (2013) Fibrinolysis greater than 3 % is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg 75:961–967. (discussion 967)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chin TL, Moore EE, Moore HB, Gonzalez E, Chapman MP, Stringham JR, Ramos CR, Banerjee A, Sauaia A (2014) A principal component analysis of postinjury viscoelastic assays: clotting factor depletion versus fibrinolysis. Surgery 156:570–577

    Article  PubMed Central  PubMed  Google Scholar 

  14. CRASH-2 Trial Collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, El-Sayed H, Gogichaishvili T, Gupta S, Herrera J, Hunt B, Iribhogbe P, Izurieta M, Khamis H, Komolafe E, Marrero MA, Mejia-Mantilla J, Miranda J, Morales C, Olaomi O, Olldashi F, Perel P, Peto R, Ramana PV, Ravi RR, Yutthakasemsunt S (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 376:23–32

    Article  Google Scholar 

  15. Cotton BA, Faz G, Hatch QM, Radwan ZA, Podbielski J, Wade C, Kozar RA, Holcomb JB (2011) Rapid thrombelastography delivers real-time results that predict transfusion within 1 hour of admission. J Trauma 71:407–414. (discussion 414–417)

    Article  PubMed  Google Scholar 

  16. Cotton BA, Harvin JA, Kostousouv V, Minei KM, Radwan ZA, Schochl H, Wade CE, Holcomb JB, Matijevic N (2012) Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg 73:365–370. (discussion 370)

    Article  CAS  PubMed  Google Scholar 

  17. Cotton BA, Minei KM, Radwan ZA, Matijevic N, Pivalizza E, Podbielski J, Wade CE, Kozar RA, Holcomb JB (2012) Admission rapid thrombelastography predicts development of pulmonary embolism in trauma patients. J Trauma Acute Care Surg 72:1470–1475. (discussion 1475–1477)

    Article  PubMed  Google Scholar 

  18. Davenport R, Manson J, De’Ath H, Platton S, Coates A, Allard S, Hart D, Pearse R, Pasi KJ, MacCallum P, Stanworth S, Brohi K (2011) Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med 39:2652–2658

    PubMed Central  PubMed  Google Scholar 

  19. Despotis GJ, Santoro SA, Spitznagel E, Kater KM, Barnes P, Cox JL, Lappas DG (1994) On-site prothrombin time, activated partial thromboplastin time, and platelet count. A comparison between whole blood and laboratory assays with coagulation factor analysis in patients presenting for cardiac surgery. Anesthesiology 80:338–351

    Article  CAS  PubMed  Google Scholar 

  20. Espinosa A, Seghatchian J (2014) What is happening? The evolving role of the blood bank in the management of the bleeding patient: the impact of TEG as an early diagnostic predictor for bleeding. Transf Apheres Sci 51:105–110

    Article  Google Scholar 

  21. Evans JA, van Wessem KJ, McDougall D, Lee KA, Lyons T, Balogh ZJ (2010) Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg 34:158–163

    Article  PubMed  Google Scholar 

  22. Fenger-Eriksen C, Moore GW, Rangarajan S, Ingerslev J, Sorensen B (2010) Fibrinogen estimates are influenced by methods of measurement and hemodilution with colloid plasma expanders. Transfusion 50:2571–2576

    Article  PubMed  Google Scholar 

  23. Flatland B, Koenigshof AM, Rozanski EA, Goggs R, Wiinberg B (2014) Systematic evaluation of evidence on veterinary viscoelastic testing part 2: sample acquisition and handling. J Vet Emerg Crit Care 24:30–36

    Article  Google Scholar 

  24. Gonzalez E, Moore EE, Moore HB, Chapman MP, Silliman CC, Banerjee A (2014) Trauma-induced coagulopathy: an institution’s 35 year perspective on practice and research. Scand J Surg 103:89–103

    Article  CAS  PubMed  Google Scholar 

  25. Gruen RL, Jurkovich GJ, McIntyre LK, Foy HM, Maier RV (2006) Patterns of errors contributing to trauma mortality: lessons learned from 2594 deaths. Ann Surg 244:371–380

    PubMed Central  PubMed  Google Scholar 

  26. Haas T, Fries D, Velik-Salchner C, Reif C, Klingler A, Innerhofer P (2008) The in vitro effects of fibrinogen concentrate, factor XIII and fresh frozen plasma on impaired clot formation after 60 % dilution. Anesth Analg 106:1360–1365

    Article  CAS  PubMed  Google Scholar 

  27. Haas T, Gorlinger K, Grassetto A, Agostini V, Simioni P, Nardi G, Ranucci M (2014) Thromboelastometry for guiding bleeding management of the critically ill patient: a systematic review of the literature. Minerva Anestesiol 80:1320–1335

    CAS  PubMed  Google Scholar 

  28. Haas T, Spielmann N, Mauch J, Madjdpour C, Speer O, Schmugge M, Weiss M (2012) Comparison of thromboelastometry (ROTEM®) with standard plasmatic coagulation testing in paediatric surgery. Br J Anaesth 108:36–41

    Article  CAS  PubMed  Google Scholar 

  29. Haas T, Spielmann N, Mauch J, Speer O, Schmugge M, Weiss M (2012) Reproducibility of thrombelastometry (ROTEM(R)): point-of-care versus hospital laboratory performance. Scand J Clin Lab Invest 72:313–317

    Article  PubMed  Google Scholar 

  30. Häder M (2002) Delphi-Befragungen. Ein Arbeisbuch. Westdt. Verlag, Wiesbaden. (ISBN 3-531-13748-4)

    Book  Google Scholar 

  31. Hagemo JS, Naess PA, Johansson P, Windelov NA, Cohen MJ, Roislien J, Brohi K, Heier HE, Hestnes M, Gaarder C (2013) Evaluation of TEG(®) and RoTEM(®) inter-changeability in trauma patients. Injury 44:600–605

    Article  PubMed  Google Scholar 

  32. Hagemo JS, Stanworth S, Juffermans NP, Brohi K, Cohen M, Johansson PI, Roislien J, Eken T, Naess PA, Gaarder C (2014) Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care 18:R52

    Article  PubMed Central  PubMed  Google Scholar 

  33. Harr JN, Moore EE, Ghasabyan A, Chin TL, Sauaia A, Banerjee A, Silliman CC (2013) Functional fibrinogen assay indicates that fibrinogen is critical in correcting abnormal clot strength following trauma. Shock 39:45–49

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Hartert H (1948) Blutgerinnungsstudien mit der Thrombelastographie, einem neuen Untersuchungsverfahren. Klin Wochenschr 16:257–260

    Google Scholar 

  35. Hartert H (1951) Thrombelastography, a method for physical analysis of blood coagulation. Z Gesamte Exp Med 117:189–203

    Article  CAS  PubMed  Google Scholar 

  36. Holcomb JB, Minei KM, Scerbo ML, Radwan ZA, Wade CE, Kozar RA, Gill BS, Albarado R, McNutt MK, Khan S, Adams PR, McCarthy JJ, Cotton BA (2012) Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients. Ann Surg 256:476–486

    Article  PubMed  Google Scholar 

  37. Inaba K, Karamanos E, Lustenberger T, Schochl H, Shulman I, Nelson J, Rhee P, Talving P, Lam L, Demetriades D (2013) Impact of fibrinogen levels on outcomes after acute injury in patients requiring a massive transfusion. J Am Coll Surg 216:290–297

    Article  PubMed  Google Scholar 

  38. Ives C, Inaba K, Branco BC, Okoye O, Schochl H, Talving P, Lam L, Shulman I, Nelson J, Demetriades D (2012) Hyperfibrinolysis elicited via thromboelastography predicts mortality in trauma. J Am Coll Surg 215:496–502

    Article  PubMed  Google Scholar 

  39. Johansson PI, Stensballe J, Oliveri R, Wade CE, Ostrowski SR, Holcomb JB (2014) How I treat patients with massive hemorrhage. Blood 124:3052–3058

    Article  CAS  PubMed  Google Scholar 

  40. Johansson PI, Stissing T, Bochsen L, Ostrowski SR (2009) Thrombelastography and tromboelastometry in assessing coagulopathy in trauma. Scand J Trauma Resusc Emerg Med 17:45

    Article  PubMed Central  PubMed  Google Scholar 

  41. Kashuk JL, Moore EE, Sabel A, Barnett C, Haenel J, Le T, Pezold M, Lawrence J, Biffl WL, Cothren CC, Johnson JL (2009) Rapid thrombelastography (r-TEG) identifies hypercoagulability and predicts thromboembolic events in surgical patients. Surgery 146:764–772. (discussion 772–774)

    Article  PubMed  Google Scholar 

  42. Kashuk JL, Moore EE, Sawyer M, Wohlauer M, Pezold M, Barnett C, Biffl WL, Burlew CC, Johnson JL, Sauaia A (2010) Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg 252:434–442. (discussion 443–444)

    PubMed  Google Scholar 

  43. Kashuk JL, Moore EE, Wohlauer M, Johnson JL, Pezold M, Lawrence J, Biffl WL, Burlew CC, Barnett C, Sawyer M, Sauaia A (2012) Initial experiences with point-of-care rapid thrombelastography for management of life-threatening postinjury coagulopathy. Transfusion 52:23–33

    Article  PubMed  Google Scholar 

  44. Keene DD, Nordmann GR, Woolley T (2013) Rotational thromboelastometry-guided trauma resuscitation. Curr Opin Crit Care 19:605–612

    PubMed  Google Scholar 

  45. Khan S, Brohi K, Chana M, Raza I, Stanworth S, Gaarder C, Davenport R, International Trauma Research N (2014) Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage. J Trauma Acute Care Surg 76:561–567. (discussion 567–568)

    Article  CAS  PubMed  Google Scholar 

  46. Khan S, Davenport R, Raza I, Glasgow S, De’Ath HD, Johansson PI, Curry N, Stanworth S, Gaarder C, Brohi K (2015) Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med 41:239–247

    Article  CAS  PubMed  Google Scholar 

  47. Kitchen DP, Kitchen S, Jennings I, Woods T, Walker I (2010) Quality assurance and quality control of thrombelastography and rotational Thromboelastometry: the UK NEQAS for blood coagulation experience. Semin Thromb Hemost 36:757–763

    Article  PubMed  Google Scholar 

  48. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Nelson MF, Cohen MJ (2012) Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg 73:13–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Lang T, Bauters A, Braun SL, Potzsch B, von Pape KW, Kolde HJ, Lakner M (2005) Multi-centre investigation on reference ranges for ROTEM® thromboelastometry. Blood Coagul Fibrinolysis 16:301–310

    Article  PubMed  Google Scholar 

  50. Lang T, Johanning K, Metzler H, Piepenbrock S, Solomon C, Rahe-Meyer N, Tanaka KA (2009) The effects of fibrinogen levels on thromboelastometric variables in the presence of thrombocytopenia. Anesth Analg 108:751–758

    Article  PubMed  Google Scholar 

  51. Levrat A, Gros A, Rugeri L, Inaba K, Floccard B, Negrier C, David JS (2008) Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth 100:792–797

    Article  CAS  PubMed  Google Scholar 

  52. Levy JH, Welsby I, Goodnough LT (2014) Fibrinogen as a therapeutic target for bleeding: a review of critical levels and replacement therapy. Transfusion 54:1389–1405

    Article  CAS  PubMed  Google Scholar 

  53. MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M (2003) Early coagulopathy predicts mortality in trauma. J Trauma 55:39–44

    Article  PubMed  Google Scholar 

  54. Maegele M (2009) Frequency, risk stratification and therapeutic management of acute post-traumatic coagulopathy. Vox Sang 97:39–49

    Article  CAS  PubMed  Google Scholar 

  55. Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, Simanski C, Neugebauer E, Bouillon B, AG Polytrauma German Trauma Society (2007) Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury 38:298–304

    Article  PubMed  Google Scholar 

  56. Maegele M, Schochl H, Cohen MJ (2014) An update on the coagulopathy of trauma. Shock 41(Suppl 1):21–25

    Article  CAS  PubMed  Google Scholar 

  57. Martin J, Schuster T, Moessmer G, Kochs EF, Wagner KJ (2012) Alterations in rotation thromboelastometry (ROTEM(R)) parameters: point-of-care testing vs analysis after pneumatic tube system transport. Br J Anaesth 109:540–545

    Article  CAS  PubMed  Google Scholar 

  58. Meyer AS, Meyer MA, Sorensen AM, Rasmussen LS, Hansen MB, Holcomb JB, Cotton BA, Wade CE, Ostrowski SR, Johansson PI (2014) Thrombelastography and rotational thromboelastometry early amplitudes in 182 trauma patients with clinical suspicion of severe injury. J Trauma Acute Care Surg 76:682–690

    Article  PubMed  Google Scholar 

  59. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, Banerjee A, Sauaia A (2014) Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg 77:811–817. (discussion 817)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Nagler M, ten Cate H, Kathriner S, Casutt M, Bachmann LM, Wuillemin WA (2014) Consistency of thromboelastometry analysis under scrutiny: results of a systematic evaluation within and between analysers. Thromb Haemost 111:1161–1166

    Article  CAS  PubMed  Google Scholar 

  61. Nienaber U, Innerhofer P, Westermann I, Schochl H, Attal R, Breitkopf R, Maegele M (2011) The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury 42:697–701

    Article  PubMed  Google Scholar 

  62. Niles SE, McLaughlin DF, Perkins JG, Wade CE, Li Y, Spinella PC, Holcomb JB (2008) Increased mortality associated with the early coagulopathy of trauma in combat casualties. J Trauma 64:1459–1463. (discussion 1463–1465)

    Article  PubMed  Google Scholar 

  63. Nystrup KB, Windelov NA, Thomsen AB, Johansson PI (2011) Reduced clot strength upon admission, evaluated by thrombelastography (TEG), in trauma patients is independently associated with increased 30-day mortality. Scand J Trauma Resusc Emerg Med 19:52

    Article  PubMed Central  PubMed  Google Scholar 

  64. Ogawa S, Szlam F, Bolliger D, Nishimura T, Chen EP, Tanaka KA (2012) The impact of hematocrit on fibrin clot formation assessed by rotational thromboelastometry. Anesth Analg 115:16–21

    Article  CAS  PubMed  Google Scholar 

  65. Olde Engberink RH, Kuiper GJ, Wetzels RJ, Nelemans PJ, Lance MD, Beckers EA, Henskens YM (2014) Rapid and correct prediction of thrombocytopenia and hypofibrinogenemia with rotational thromboelastometry in cardiac surgery. J Cardiothorac Vasc Anesth 28:210–216

    Article  PubMed  Google Scholar 

  66. Oswald E, Stalzer B, Heitz E, Weiss M, Schmugge M, Strasak A, Innerhofer P, Haas T (2010) Thromboelastometry (ROTEM®) in children: age-related reference ranges and correlations with standard coagulation tests. Br J Anaesth 105:827–835

    Article  CAS  PubMed  Google Scholar 

  67. Pezold M, Moore EE, Wohlauer M, Sauaia A, Gonzalez E, Banerjee A, Silliman CC (2012) Viscoelastic clot strength predicts coagulation-related mortality within 15 min. Surgery 151:48–54

    Article  PubMed Central  PubMed  Google Scholar 

  68. Pommerening MJ, Schwartz DA, Cohen MJ, Schreiber MA, del Junco DJ, Camp EA, Wade CE, Holcomb JB, Cotton BA (2014) Hypercoagulability after injury in premenopausal females: a prospective, multicenter study. Surgery 156:439–447

    Article  PubMed  Google Scholar 

  69. Raza I, Davenport R, Rourke C, Platton S, Manson J, Spoors C, Khan S, De’Ath HD, Allard S, Hart DP, Pasi KJ, Hunt BJ, Stanworth S, MacCallum PK, Brohi K (2013) The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost 11:307–314

    Article  CAS  PubMed  Google Scholar 

  70. Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, Stanworth S, Brohi K (2012) Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost 10:1342–1351

    Article  CAS  PubMed  Google Scholar 

  71. Rugeri L, Levrat A, David JS, Delecroix E, Floccard B, Gros A, Allaouchiche B, Negrier C (2007) Diagnosis of early coagulation abnormalities in trauma patients by rotation thrombelastography. J Thromb Haemost 5:289–295

    Article  CAS  PubMed  Google Scholar 

  72. Saner FH, Tanaka KA, Sakai T (2014) Viscoelastic testing in liver transplantation: TEG® versus ROTEM®. In: ILTS Education Anesthesia/CCM. http://www.iltseducation.org

  73. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, Pons PT (1995) Epidemiology of trauma deaths: a reassessment. J Trauma 38:185–193

    Article  CAS  PubMed  Google Scholar 

  74. Schochl H, Forster L, Woidke R, Solomon C, Voelckel W (2010) Use of rotation thromboelastometry (ROTEM) to achieve successful treatment of polytrauma with fibrinogen concentrate and prothrombin complex concentrate. Anaesthesia 65:199–203

    Article  CAS  PubMed  Google Scholar 

  75. Schochl H, Frietsch T, Pavelka M, Jambor C (2009) Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma 67:125–131

    Article  PubMed  Google Scholar 

  76. Schochl H, Maegele M, Solomon C, Gorlinger K, Voelckel W (2012) Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med 20:15

    Article  PubMed Central  PubMed  Google Scholar 

  77. Schochl H, Nienaber U, Hofer G, Voelckel W, Jambor C, Scharbert G, Kozek-Langenecker S, Solomon C (2010) Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care 14:R55

    Article  PubMed Central  PubMed  Google Scholar 

  78. Schochl H, Nienaber U, Maegele M, Hochleitner G, Primavesi F, Steitz B, Arndt C, Hanke A, Voelckel W, Solomon C (2011) Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care 15:R83

    Article  PubMed Central  PubMed  Google Scholar 

  79. Schochl H, Schlimp CJ, Voelckel W (2014) Perioperative coagulation management in multiple trauma patients based on viscoelastic test results. Unfallchirurg 117:111–117

    Article  CAS  PubMed  Google Scholar 

  80. Schochl H, Solomon C, Traintinger S, Nienaber U, Tacacs-Tolnai A, Windhofer C, Bahrami S, Voelckel W (2011) Thromboelastometric (ROTEM®) findings in patients suffering from isolated severe traumatic brain injury. J Neurotrauma 28:2033–2041

    Article  PubMed  Google Scholar 

  81. Schramko A, Suojaranta-Ylinen R, Niemi T, Pesonen E, Kuitunen A, Raivio P, Salmenpera M (2015) The use of balanced HES 130/0.42 during complex cardiac surgery; effect on blood coagulation and fluid balance: a randomized controlled trial. Perfusion 30:224-232

  82. Schreiber MA, Differding J, Thorborg P, Mayberry JC, Mullins RJ (2005) Hypercoagulability is most prevalent early after injury and in female patients. J Trauma 58:475–480. (discussion 480–481)

  83. Solomon C, Rahe-Meyer N, Schochl H, Ranucci M, Gorlinger K (2013) Effect of haematocrit on fibrin-based clot firmness in the FIBTEM test. Blood Transfus 11:412–418

    PubMed Central  PubMed  Google Scholar 

  84. Solomon C, Traintinger S, Ziegler B, Hanke A, Rahe-Meyer N, Voelckel W, Schochl H (2011) Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost 106:322–330

    Article  CAS  PubMed  Google Scholar 

  85. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Rossaint R (2013) Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care 17:R76

    Article  PubMed Central  PubMed  Google Scholar 

  86. Spoerke N, Underwood S, Differding J, Van P, Sambasivan C, Shapiro D, Schreiber M (2010) Effects of ethanol intoxication and gender on blood coagulation. J Trauma 68:1106–1111

    Article  CAS  PubMed  Google Scholar 

  87. Stensballe J, Ostrowski SR, Johansson PI (2014) Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol 27:212–218

    Article  PubMed  Google Scholar 

  88. Tauber H, Innerhofer P, Breitkopf R, Westermann I, Beer R, El Attal R, Strasak A, Mittermayr M (2011) Prevalence and impact of abnormal ROTEM(R) assays in severe blunt trauma: results of the ‚Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study‘. Br J Anaesth 107:378–387

    Article  CAS  PubMed  Google Scholar 

  89. Teixeira PG, Inaba K, Hadjizacharia P, Brown C, Salim A, Rhee P, Browder T, Noguchi TT, Demetriades D (2007) Preventable or potentially preventable mortality at a mature trauma center. J Trauma 63:1338–1346. (discussion 1346–1347)

    Article  PubMed  Google Scholar 

  90. Theusinger OM, Nurnberg J, Asmis LM, Seifert B, Spahn DR (2010) Rotation thromboelastometry (ROTEM) stability and reproducibility over time. Eur J Cardiothorac Surg 37:677–683

    Article  PubMed  Google Scholar 

  91. Theusinger OM, Spahn DR, Ganter MT (2009) Transfusion in trauma: why and how should we change our current practice? Curr Opin Anaesthesiol 22:305–312

    Article  PubMed  Google Scholar 

  92. Theusinger OM, Wanner GA, Emmert MY, Billeter A, Eismon J, Seifert B, Simmen HP, Spahn DR, Baulig W (2011) Hyperfibrinolysis diagnosed by rotational thromboelastometry (ROTEM) is associated with higher mortality in patients with severe trauma. Anesth Analg 113:1003–1012

    Article  PubMed  Google Scholar 

  93. Velik-Salchner C, Haas T, Innerhofer P, Streif W, Nussbaumer W, Klingler A, Klima G, Martinowitz U, Fries D (2007) The effect of fibrinogen concentrate on thrombocytopenia. J Thromb Haemost 5:1019–1025

    Article  CAS  PubMed  Google Scholar 

  94. Welsh KJ, Nedelcu E, Bai Y, Wahed A, Klein K, Tint H, Gregoric I, Patel M, Kar B, Loyalka P, Nathan S, Loubser P, Weeks PA, Radovancevic R, Nguyen AN (2014) How do we manage cardiopulmonary bypass coagulopathy? Transfusion 54:2158–2166

    Article  PubMed  Google Scholar 

  95. Woolley T, Midwinter M, Spencer P, Watts S, Doran C, Kirkman E (2013) Utility of interim ROTEM(®) values of clot strength, A5 and A10, in predicting final assessment of coagulation status in severely injured battle patients. Injury 44:593–599

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Maegele.

Ethics declarations

Interessenkonflikt

Die Durchführung der Konsensuskonferenz wurde unterstützt durch eine uneingeschränkte Zuwendung von TEM International und CSL Behring sowie durch eine Ausbildungsfördermaßnahme vonseiten des St. Michael’s Hospital Toronto, Kanada.

D. Bolliger erhielt Reisekostenunterstützung von TEM International und Baxter sowie Vortragshonoraria und finanzielle Unterstützung bei Forschungsvorhaben von CSL Behring; K. Brohi erhielt finanzielle Unterstützung bei Forschungsvorhaben von Haemonetics Inc. und TEM International sowie Vortragshonoraria von Haemonetics Inc.; J. Callum erhielt materielle Unterstützung bei Forschungsvorhaben von TEM International und finanzielle Unterstützung bei Forschungsvorhaben von CSL Behring; A. Cap erhielt zur Teilnahme an der Konsensuskonferenz finanzielle Unterstützung durch das St. Michael’s Hospital Toronto sowie finanzielle Unterstützung bei Forschungsvorhaben durch die US Army; M. Chapman gibt an, dass kein Interessenkonflikt besteht; M. Cohen erhielt finanzielle Unterstützung bei Forschungsvorhaben durch das NIH DoD; B. Cotton erhielt Beratungshonoraria von Haemonetics Inc.; N. Curry gibt an, dass kein Interessenkonflikt besteht; R. Davenport erhielt Beratungshonoraria und finanzielle Unterstützung bei Forschungsvorhaben von TEM International; D. Fries erhielt finanzielle Unterstützung bei Forschungsvorhaben von TEM International; D. Frith erhielt zur Teilnahme an der Konsensuskonferenz finanzielle Unterstützung durch das St. Michael’s Hospital Toronto; M. Fröhlich gibt an, dass kein Interessenkonflikt besteht; K. Görlinger erhielt zur Teilnahme an der Konsensuskonferenz finanzielle Unterstützung von TEM International und arbeitet seit Juli 2012 als Medical Director für TEM International; T. Haas erhielt Vortragshonoraria von CSL Behring, TEM International und Octapharma; J. Hess erhielt zur Teilnahme an der Konsensuskonferenz finanzielle Unterstützung von TEM International und für die Erstellung von Lehrmaterialien von der AABB; K. Inaba gibt an, dass kein Interessenkonflikt besteht; K. Karkouti erhielt Reisekostenunterstützung von TEM International und finanzielle Unterstützung bei Forschungsvorhaben von TEM International; M. Maegele erhielt Reisekostenunterstützung von TEM International und Beratungs- und Vortragshonoraria von CSL Behring, LFB, TEM International, Astra Zeneca und Biotest; W. Martini gibt an, dass kein Interessenkonflikt besteht; B. Nascimento erhielt zur Teilnahme an der Konsensuskonferenz finanzielle Unterstützung von TEM International und finanzielle Unterstützung bei Forschungsvorhaben von CSL Behring; S. Rizoli erhielt unbegrenzte Ausbildungsförderung („unrestricted educational grant“) von CSL Behring und TEM International; S. Scarpelini gibt an, dass kein Interessenkonflikt besteht; H. Schöchl erhielt Vortragshonoraria, Reiskostenunterstützung und finanzielle Unterstützung bei Forschungsvorhaben von TEM International; M. Schreiber gibt an, dass kein Interessenkonflikt besteht; O. Theusinger erhielt Vortrags- und Beratungshonoraria von CSL Behring, Vifor SA, Roche Pharma, Pentapharm und TEM International; P. Veigas gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Erstpublikation der englischen Fassung: Inaba K, Rizoli S, Veigas PV, Callum J, Davenport R, Hess J, Maegele M, and the Viscoelastic Testing in Trauma Consensus Panel (2015) 2014 Consensus Conference on viscoelastic test based transfusion guidelines for early trauma resuscitation: Report of the panel. J Trauma Acute Care Surgery 78:1220-1229

Abkürzungen siehe Ende des Beitrags.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maegele, M., Inaba, K., Rizoli, S. et al. Frühe viskoelastizitätsbasierte Gerinnungstherapie bei blutenden Schwerverletzten. Anaesthesist 64, 778–794 (2015). https://doi.org/10.1007/s00101-015-0040-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-015-0040-8

Schlüsselwörter

Keywords

Navigation