Skip to main content
Log in

Echtzeit-Feedback-Systeme zur Verbesserung der Reanimationsqualität

Real-time feedback systems for improvement of resuscitation quality

  • Notfallmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Qualität der Basismaßnahmen hat einen direkten Einfluss auf das Überleben von Reanimationspatienten. Beobachtungsstudien mit professionellem Rettungsfachpersonal ergaben, dass die empfohlenen Qualitätsparameter der Reanimationsleitlinien nicht erreicht werden. Echtzeit-Feedback-Systeme zur Reanimation können einen Beitrag zur Qualitätsverbesserung leisten. Diese Systeme messen über einen sternalen Sensor mit Beschleunigungs- und Druckmessern die durchgeführten Thoraxkompressionen und über die thorakale Impedanz des EKG die Beatmungen in Echtzeit während einer laufender Reanimation. Bei Abweichung vom geforderten Ideal (z. B. Eindrücktiefe zu flach oder Hyperventilation) geben diese Systeme Korrekturen über visuelle oder akustische Rückmeldungen. Feedback-Systeme bieten verschiedene Nutzungsmöglichkeiten: Im Trainings- und Ausbildungssektor kann durch Feedback-Technologie die Qualität der Reanimation nachhaltig verbessert werden. Aktuelle Literatur weist darauf hin, dass auch im klinischen Gebrauch Echtzeit-Feedback-Systeme in Kombination mit intensiver Schulung und Nachbesprechung die Qualität und den Erfolg von Reanimationen verbessern können. Durch die Speicherung der Reanimationsdaten bieten diese Systeme auch die Möglichkeit, die Qualität von Reanimationsversuchen retrospektiv auszuwerten.

Abstract

The quality of chest compression is a determinant of survival after cardiac arrest. Therefore, the European Resuscitation Council (ERC) 2010 guidelines on resuscitation strongly focus on compression quality. Despite its impact on survival, observational studies have shown that chest compression quality is not reached by professional rescue teams. Real-time feedback devices for resuscitation are able to measure chest compression during an ongoing resuscitation attempt through a sternal sensor equipped with a motion and pressure detection system. In addition to the electrocardiograph (ECG) ventilation can be detected by transthoracic impedance monitoring. In cases of quality deviation, such as shallow chest compression depth or hyperventilation, feedback systems produce visual or acoustic alarms. Rescuers can thereby be supported and guided to the requested quality in chest compression and ventilation. Feedback technology is currently available both as a so-called stand-alone device and as an integrated feature in a monitor/defibrillator unit. Multiple studies have demonstrated sustainable enhancement in the education of resuscitation due to the use of real-time feedback technology. There is evidence that real-time feedback for resuscitation combined with training and debriefing strategies can improve both resuscitation quality and patient survival. Chest compression quality is an independent predictor for survival in resuscitation and should therefore be measured and documented in further clinical multicenter trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Notes

  1. Alle Preisangaben sind ohne Gewähr.

  2. Alle Preisangaben sind ohne Gewähr.

Literatur

  1. Abella BS, Alvarado JP, Myklebust H et al (2005) Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 293:305–310

    Article  PubMed  CAS  Google Scholar 

  2. Abella BS, Edelson DP, Kim S et al (2007) CPR quality improvement during in-hospital cardiac arrest using a real-time audiovisual feedback system. Resuscitation 73:54–61

    Article  PubMed  Google Scholar 

  3. Aufderheide TP, Sigurdsson G, Pirallo RG et al (2004) Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 109:1960–1965

    Article  PubMed  Google Scholar 

  4. Berg RA, Sanders AB, Kern KB et al (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104:2465–2470

    Article  PubMed  CAS  Google Scholar 

  5. Bjorshol CA, Myklebust H, Nilsen KL et al (2011) Effect of socioemotional stress on the quality of cardiopulmonary resuscitation during advanced life support in a randomized manikin study. Crit Care Med 39:300–304

    Article  PubMed  Google Scholar 

  6. Bohn A, Weber TP, Wecker S et al (2011) The addition of voice prompts to audiovisual feedback and debriefing does not modify CPR quality or outcomes in out of hospital cardiac arrest – A prospective, randomized trial. Resuscitation 82:257–262

    Article  PubMed  Google Scholar 

  7. Christenson J, Andrusiek D, Everson-Stewart S et al (2009) Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation 120:1241–1247

    Article  PubMed  Google Scholar 

  8. Deakin CD, Nolan J, Soar J et al (2010) European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation 81:1305–1352

    Article  PubMed  Google Scholar 

  9. Dine CJ, Gersh RE, Leary M et al (2008) Improving cardiopulmonary resuscitation quality and resuscitation training by combining audiovisual feedback and debriefing. Crit Care Med 36:2817–2822

    Article  PubMed  Google Scholar 

  10. Edelson DP, Abella BS, Kramer-Johansen J et al (2006) Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation 71:137–145

    Article  PubMed  Google Scholar 

  11. Eftestol T, Sunde K, Steen PA et al (2002) Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation 105:2270–2273

    Article  PubMed  Google Scholar 

  12. Hamilton C (2007) Critical assessment of new devices. Perfusion 22:167–171

    Article  PubMed  Google Scholar 

  13. Handley AJ, Handley SA (2003) Improving CPR performance using an audible feedback system suitable for incorporation into an automated external defibrillator. Resuscitation 57:57–62

    Article  PubMed  Google Scholar 

  14. Koster RW, Baubin MA, Bossaert LL et al (2010) European Resuscitation Council Guidelines for Resuscitation 2010 Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation 81:1277–1292

    Article  PubMed  Google Scholar 

  15. Kramer-Johansen J, Myklebust H, Wik L et al (2006) Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Resuscitation 71:283–292

    Article  PubMed  Google Scholar 

  16. Lukas RP, Sengelhoff C, Döpker S et al (2010) Thoraxkompressionsqualität: Hilft Feedback-Technologie? Anaesthesist 59:135–139

    Article  PubMed  CAS  Google Scholar 

  17. Oh JH, Lee SJ, Kim SE et al (2008) Effects of audio tone guidance on performance of CPR in simulated cardiac arrest with an advanced airway. Resuscitation 79:273–277

    Article  PubMed  Google Scholar 

  18. Olasveengen TM, Tomlinson AE, Wik L et al (2007) A failed attempt to improve quality of out-of-hospital CPR through performance evaluation. Prehosp Emerg Care 11:427–433

    Article  PubMed  Google Scholar 

  19. Peberdy MA, Silver A, Ornato J (2009) Effect of caregiver gender, age, and feedback prompts on chest compression rate and depth. Resuscitation 80:1169–1174

    Article  PubMed  Google Scholar 

  20. Perkins GD, Augré C, Rogers H et al (2005) CPREzy: an evaluation during simulated cardiac arrest on a hospital bed. Resuscitation 64:103–108

    Article  PubMed  Google Scholar 

  21. Rittenberger JC, Guimond G, Platt TE et al (2006) Quality of BLS decreases with increasing resuscitation complexity. Resuscitation 68:365–369

    Article  PubMed  Google Scholar 

  22. Skorning M, Beckers SK, Brokmann JC et al (2010) New visual feedback device improves performance of chest compressions by professionals in simulated cardiac arrest. Resuscitation 81:53–58

    Article  PubMed  Google Scholar 

  23. Thomas SH, Stone CK, Austin PE et al (1995) Utilization of a pressure-sensing monitor to improve in-flight chest compressions. Am J Emerg Med 13:155–157

    Article  PubMed  CAS  Google Scholar 

  24. Berkom PF van, Noordergraaf GJ, Scheffer GJ et al (2008) Does use of the CPREzy involve more work than CPR without feedback? Resuscitation 78:66–70

    Article  PubMed  Google Scholar 

  25. Wik L, Kramer-Johansen J, Myklebust H et al (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293:299–304

    Article  PubMed  CAS  Google Scholar 

  26. Wik L, Myklebust H, Auestad BH et al (2002) Retention of basic life support skills 6 months after training with an automated voice advisory manikin system without instructor involvement. Resuscitation 52:273–279

    Article  PubMed  Google Scholar 

  27. Wik L, Myklebust H, Auestadt BH et al (2005) Twelve-month retention of CPR skills with automatic correcting verbal feedback. Resuscitation 66:27–30

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.P. Lukas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukas, R., Van Aken, H., Engel, P. et al. Echtzeit-Feedback-Systeme zur Verbesserung der Reanimationsqualität. Anaesthesist 60, 653–660 (2011). https://doi.org/10.1007/s00101-011-1909-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-011-1909-9

Schlüsselwörter

Keywords

Navigation