Skip to main content
Log in

Rahmenbedingungen für eine intakte Hämostase

Was muss am Unfallort, im Schockraum und intraoperativ beachtet werden?

Prerequisites of a functional haemostasis

What must be considered at the scene of an accident, in the emergency room and during an operation?

  • Notfallmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Eine Koagulopathie hat sich als unabhängiger Prädiktor für die perioperative Mortalität erwiesen. Deshalb wird die Erhaltung einer stabilen Gerinnungssituation als eine wichtige Voraussetzung angesehen, um die perioperative Morbidität und Mortalität zu reduzieren. Eine intakte Gerinnung ist an enge Rahmenbedingungen bezüglich Körpertemperatur, Säure-Basen-Haushalt, Plasma-Kalzium-Spiegel und Hämatokrit geknüpft. Notfallsituationen, wie schwer traumatisierte Patienten und ausgeprägte operationsbedingte Blutungen, können einen erheblichen Einfluss auf die Rahmenbedingungen einer intakten Hämostase ausüben und eine klinisch relevante Blutung fördern. Dabei sind die herkömmlichen Globaltests der Gerinnung bei der Diagnostik von Störungen der Rahmenbedingungen wenig hilfreich, da diese Untersuchungen ausschließlich mit Plasma bei einer genormten Temperatur von 37°C mit einem Kalziumüberschuss und bei ausgeglichenem Säure-Basen-Status durchgeführt werden. Damit sind die Laborergebnisse im Kontext der instabilen Rahmenbedingungen der Gerinnung wenig aussagekräftig. Deshalb ist die Kenntnis der Auswirkungen von veränderten, die Gerinnung beeinflussenden Rahmenbedingungen eine Voraussetzung zur Vermeidung schwerer Koagulopathien mit möglicherweise letalem Ausgang. Es konnte gezeigt werden, dass ein deutliches Risiko für das Auftreten klinisch bedeutsamer Koagulopathien besteht, wenn eine Körpertemperatur ≤34°C, ein pH-Wert ≤7,15, eine Konzentration des ionisierten Kalziums unter 0,9 mmol/l und/oder ein Hämatokrit unter 30–35% vorliegen. Das kombinierte Auftreten der angeführten Faktoren verschlechtert die Blutgerinnungsfähigkeit zusätzlich. Besonders nachteilig wirkt sich das gleichzeitige Auftreten von Hypothermie und Acidose aus. Die Optimierung der Rahmenbedingungen sollte möglichst früh, also bereits an der Unfallstelle beginnen und im Schockraum und OP-Saal fortgeführt werden. Der folgende Artikel soll anhand der Literaturdaten eine Übersicht zu den die Gerinnung beeinflussenden Rahmenbedingungen geben und Möglichkeiten zum Erhalt einer intakten Hämostase aufzeigen.

Abstract

A coagulopathy is an independent predictor of perioperative mortality. Therefore, maintenance of a functional coagulation system is an essential precondition to reduce morbidity and mortality in the perioperative setting. Sound coagulability also depends on prerequisites such as body temperature, acid-base balance, plasma calcium concentration and haematocrit. Severe trauma or perioperative bleeding can gravely influence these factors and boost the blood loss. Common global tests of coagulation are not helpful in this setting because they are conducted on plasma with a normalised temperature of 37°C, an excess of calcium and a stabile acid-base balance. Hence, knowledge of the effects of altered prerequisites is a premise to avoid a possibly lethal coagulopathy. According to the current literature, an increased risk for clinically significant coagulopathy exists with a body temperature ≤34°C, an acidosis ≤7.15, ionised calcium under 0.9 mmol/l or a haematocrit under 30–35%. A combination of these factors deteriorates the coagulopathy and hypothermia in addition to acidosis is especially harmful. Prevention of derangement of these factors should start as early as possible, i.e. in trauma patients at the scene of the accident and should be continued in the operating room.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

AISS:

„abdominal injury severity score“

ATIII:

Antithrombin III

BT:

Blutungszeit

Ca++:

Kalzium

Cai++:

ionisiertes Ca++

CI:

„confidence interval“

EK:

Erythrozytenkonzentrat

F:

Gerinnungsfaktor

FFP:

„fresh frozen plasma“

HAES:

Hydroxyäthylstärke

Hb:

Hämoglobin

HKT:

Hämatokrit

ISS:

„injury severity score“

OR:

Odd-Ratio

PFA-100:

Plättchenfunktionsanalysator

PTT:

partielle Thromboplastinzeit

Q:

Quick-Wert

SHT:

Schädel-Hirn-Trauma

TAT:

Thrombin-Antithrombin-Komplexe

TEG:

Thrombelastographie

TF:

„tissue factor“

TK:

Thrombozytenkonzentrat

TS:

„trauma score“

TZ:

Thrombinzeit

vWF:

Von-Willebrand-Faktor

Literatur

  1. Ariyan CE, Sosa JA (2004) Assessment and management of patients with abnormal calcium. Crit Care Med 32: S146–154

    Article  PubMed  Google Scholar 

  2. Armand R, Hess JR (2003) Treating coagulopathy in trauma patients. Transfus Med Rev 17: 223–231

    Article  PubMed  Google Scholar 

  3. Arthus M, Pages C (1890) Nouvelle theorie chimique de la coagulation du sang. Arch Physiol Norm Pathol 5: 739–749

    Google Scholar 

  4. Baker SP, O’Neill B, Haddon W Jr, Long WB (1974) The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 14: 187–196

    PubMed  Google Scholar 

  5. Bernabei AF, Levison MA, Bender JS (1992) The effects of hypothermia and injury severity on blood loss during trauma laparotomy. J Trauma 33: 835–839

    PubMed  Google Scholar 

  6. Bilkovski RN, Rivers EP, Horst HM (2004) Targeted resuscitation strategies after injury. Curr Opin Crit Care 10: 529–538

    Article  PubMed  Google Scholar 

  7. Bizzozero J (1892) Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Virchows Arch Pathol Anat Physiol Klin Med 90: 261–332

    Article  Google Scholar 

  8. Blajchman MA, Bordin JO, Bardossy L, Heddle NM (1994) The contribution of the haematocrit to thrombocytopenic bleeding in experimental animals. Br J Haematol 86: 347–350

    PubMed  Google Scholar 

  9. Brass LF (1999) More pieces of the platelet activation puzzle slide into place. J Clin Invest 104: 1663–1665

    PubMed  Google Scholar 

  10. Brohi K, Singh J, Heron M, Coats T (2003) Acute traumatic coagulopathy. J Trauma 54: 1127–1130

    PubMed  Google Scholar 

  11. Cardigan R, Turner C, Harrison P (2005) Current methods of assessing platelet function: relevance to transfusion medicine. Vox Sang 88: 153–163

    Article  PubMed  Google Scholar 

  12. Carr ME Jr, Gabriel DA, McDonagh J (1986) Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels. Biochem J 239: 513–516

    PubMed  Google Scholar 

  13. Carrico CJ, Holcomb JB, Chaudry IH (2002) Scientific priorities and strategic planning for resuscitation research and life saving therapy following traumatic injury: report of the PULSE Trauma Work Group. Acad Emerg Med 9: 621–626

    Article  PubMed  Google Scholar 

  14. Cosgriff N, Moore EE, Sauaia A et al. (1997) Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidosis revisited. J Trauma 42: 857–861

    PubMed  Google Scholar 

  15. Cote CJ, Drop LJ, Hoaglin DC et al. (1988) Ionized hypocalcemia after fresh frozen plasma administration to thermally injured children: effects of infusion rate, duration, and treatment with calcium chloride. Anesth Analg 67: 152–160

    PubMed  Google Scholar 

  16. Depka von M (2005) Neues plasmatisches Gerinnungsmodell. Symposium: Grundlagen der Gerinnung in Anästhesie und Intensivmedizin. St. Gilgen 04.–05.03.2005

  17. Eberst ME, Berkowitz LR (1994) Hemostasis in renal disease: pathophysiology and management. Am J Med 96: 168–179

    Article  PubMed  Google Scholar 

  18. Escolar G, Garrido M, Mazzara R et al. (1988) Experimental basis for the use of red cell transfusion in the management of anemic-thrombocytopenic patients. Transfusion 28: 406–411

    Article  PubMed  Google Scholar 

  19. Escolar G, Mazzara R, Castillo R, Ordinas A (1994) The role of the Baumgartner technique in transfusion medicine: research and clinical applications. Transfusion 34: 542–549

    Article  PubMed  Google Scholar 

  20. Eugster M, Reinhart WH (2005) The influence of the haematocrit on primary haemostasis in vitro. Thromb Haemost 94: 1213–1218

    PubMed  Google Scholar 

  21. Ferrara A, MacArthur JD, Wright HK et al. (1990) Hypothermia and acidosis worsen coagulopathy in the patient requiring massive transfusion. Am J Surg 160: 515–518

    Article  PubMed  Google Scholar 

  22. Fliser D, Ritz E (1998) Störungen des Kalzium- und Phosphathaushalts. Internist 39: 825–830

    Article  PubMed  Google Scholar 

  23. Fries D, Streif W, Haas T, Kuhbacher G (2004) Die Dilutionskoagulopathie, ein unterschätztes Problem? Anasthesiol Intensivmed Notfallmed Schmerzther 39: 745–750

    Article  PubMed  Google Scholar 

  24. Fries D, Haas T, Salchner V et al. (2005) Gerinnungsmanagement beim Polytrauma. Anaesthesist 54: 137–144

    Article  PubMed  Google Scholar 

  25. Fries D, Innerhofer P, Reif C et al. (2006) The effect of fibrinogen substitution on reversal of dilutional coagulopathy: an in vitro model. Anesth Analg 102: 347–351

    Article  PubMed  Google Scholar 

  26. Furie B, Furie BC (2005) Thrombus formation in vivo. J Clin Invest 115: 3355–3362

    Article  PubMed  Google Scholar 

  27. Gajic O, Dzik WH, Toy P (2006) Fresh frozen plasma and platelet transfusion for nonbleeding patients in the intensive care unit: benefit or harm? Crit Care Med 34: S170–173

    Article  PubMed  Google Scholar 

  28. Goldsmith H (1972) The flow of model particles and blood cells and its relation to thrombogenesis. Prog Hemost Thromb 1: 97–127

    PubMed  Google Scholar 

  29. Görlinger K (2005) Differenzierte Therapie komplexer Gerinnungsstörungen. J Anaesth Intensivbehandl 1: 120–124

    Google Scholar 

  30. Green FW Jr, Kaplan MM, Curtis LE, Levine PH (1978) Effect of acid and pepsin on blood coagulation and platelet aggregation. A possible contributor prolonged gastroduodenal mucosal hemorrhage. Gastroenterology 74: 38–43

    PubMed  Google Scholar 

  31. Gubler KD, Gentilello LM, Hassantash SA, Maier RV (1994) The impact of hypothermia on dilutional coagulopathy. J Trauma 36: 847–851

    PubMed  Google Scholar 

  32. Habler O, Meier J, Pape A et al. (2006) Perioperative Anämietoleranz: Mechanismen, Einflussgrößen, Grenzen. Anaesthesist. DOI 10.1007/s00101-006-1055-y

  33. Hardy JF, Moerloose P de, Samama M (2004) Massive transfusion and coagulopathy: pathophysiology and implications for clinical management. Can J Anesth 51: 293–310

    PubMed  Google Scholar 

  34. Hastbacka J, Pettila V (2003) Prevalence and predictive value of ionized hypocalcemia among critically ill patients. Acta Anaesthesiol Scand 47: 1264–1269

    Article  PubMed  Google Scholar 

  35. Hebert PC, Wells G, Blajchman MA et al. (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340: 409–417

    Article  PubMed  Google Scholar 

  36. Hiippala S (1998) Replacement of massive blood loss. Vox Sang 74 [Suppl 2]: 399–407

  37. Hiippala ST (1995) Dextran and hydroxyethyl starch interfere with fibrinogen assays. Blood Coagul Fibrinolysis 6: 743–746

    PubMed  Google Scholar 

  38. Ho KM, Ismail H (2003) Use of intravenous tranexamic acid to reduce allogeneic blood transfusion in total hip and knee arthroplasty: a meta-analysis. Anaesth Intensive Care 31: 529–537

    PubMed  Google Scholar 

  39. Hoffman M (2001) A cell-based model of hemostasis. Thromb Haemost 85: 958–965

    PubMed  Google Scholar 

  40. Hoffman M (2004) The cellular basis of traumatic bleeding. Mil Med 169: 5–7

    PubMed  Google Scholar 

  41. Hoyt DB, Bulger EM, Knudson MM et al. (1994) Death in the operating room: an analysis of a multi-center experience. J Trauma 37: 426–432

    PubMed  Google Scholar 

  42. Innerhofer P (2005) Dilutionskoagulopathie – Ein unterschätztes Problem? J Anaesth Intensivbehandl 12: 212

    Google Scholar 

  43. Innerhofer P, Fries D, Margreiter J et al. (2002) The effects of perioperatively administered colloids and crystalloids on primary platelet-mediated hemostasis and clot formation. Anesth Analg 95: 858–865

    Article  PubMed  Google Scholar 

  44. Innerhofer P, Streif W, Kuhbacher G, Fries D (2004) Monitoring der perioperativen Dilutionskoagulopathie mittels ROTEM(r)-Analyzer – Grundlagen und klinische Beispiele. Anasthesiol Intensivmed Notfallmed Schmerzther 39: 739–744

    Article  PubMed  Google Scholar 

  45. James MF, Roche AM (2004) Dose-response relationship between plasma ionized calcium concentration and thrombelastography. J Cardiothorac Vasc Anesth 18: 581–586

    Article  PubMed  Google Scholar 

  46. Johnston TD, Chen Y, Reed RL (1994) Functional equivalence of hypothermia to specific clotting factor deficiencies. J Trauma 37: 413–417

    PubMed  Google Scholar 

  47. Jurkovich GJ, Greiser WB, Luterman A, Curreri PW (1987) Hypothermia in trauma victims: an ominous predictor of survival. J Trauma 27: 1019–1024

    PubMed  Google Scholar 

  48. Kaufmann CR, Dwyer KM, Crews JD et al. (1997) Usefulness of thrombelastography in assessment of trauma patient coagulation. J.Trauma 42: 716–720

    Google Scholar 

  49. Kehrel BE (2003) Blutplättchen: Biochemie und Physiologie. Hamostaseologie 23: 149–158

    PubMed  Google Scholar 

  50. Kermode JC, Zheng Q, Milner EP (1999) Marked temperature dependence of the platelet calcium signal induced by human von Willebrand factor. Blood 94: 199–207

    PubMed  Google Scholar 

  51. Khuri SF, Wolfe JA, Josa M et al. (1992) Hematologic changes during and after cardiopulmonary bypass and their relationship to the bleeding time and nonsurgical blood loss. J Thorac Cardiovasc Surg 104: 94–107

    PubMed  Google Scholar 

  52. Koscielny J (2005) Welche präoperative Gerinnungsdiagnostik? Symposium: Grundlagen der Gerinnung in Anästhesie und Intensivmedizin. Bad Sassendorf, 02.–03.09.2005

  53. Krause KR, Howells GA, Buhs CL et al. (2000) Hypothermia-induced coagulopathy during hemorrhagic shock. Am Surg 66: 348–354

    PubMed  Google Scholar 

  54. Kretschmer V, Daraktchiev A, Bade S et al. (2004) Does hemodilution enhance coagulability? Anasthesiol Intensivmed Notfallmed Schmerzther 39: 751–756

    Article  PubMed  Google Scholar 

  55. Lang T, Bauters A, Braun SL et al. (2005) Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinolysis 16: 301–310

    Article  PubMed  Google Scholar 

  56. Levy JH (2006) Massive transfusion coagulopathy. Semin Hematol 43: S59–63

    Article  PubMed  Google Scholar 

  57. Luddington RJ (2005) Thrombelastography/thromboelastometry. Clin Lab Haematol 27: 81–90

    Article  PubMed  Google Scholar 

  58. Lugovskoi EV, Gritsenko PG, Skurskii SI, Komissarenko SV (2002) The role of calcium ions in fibrin polymerization. Ukr Biokhim Zh 74: 5–10

    Google Scholar 

  59. Lynn M, Jeroukhimov I, Klein Y, Martinowitz U (2002) Updates in the management of severe coagulopathy in trauma patients. Intensive Care Med 28 [Suppl 2]: S241–247

  60. Martini WZ, Chinkes DL, Pusateri AE et al. (2005) Acute changes in fibrinogen metabolism and coagulation after hemorrhage in pigs. Am J Physiol Endocrinol Metab 289: E930–934

    Article  PubMed  Google Scholar 

  61. Martini WZ, Pusateri AE, Uscilowicz JM et al. (2005) Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma 58: 1002–1009

    PubMed  Google Scholar 

  62. McLoughlin TM, Fontana JL, Alving B et al. (1996) Profound normovolemic hemodilution: hemostatic effects in patients and in a porcine model. Anesth Analg 83: 459–465

    Article  PubMed  Google Scholar 

  63. Meng ZH, Wolberg AS, Monroe DMI, Hoffman M (2003) The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma 55: 886–891

    PubMed  Google Scholar 

  64. Murrell Z, Haukoos JS, Putnam B, Klein SR (2005) The effect of older blood on mortality, need for ICU care, and the length of ICU stay after major trauma. Am Surg 71: 781–785

    PubMed  Google Scholar 

  65. Ng KF, Lam CC, Chan LC (2002) In vivo effect of haemodilution with saline on coagulation: a randomized controlled trial. Br J Anaesth 88: 475–480

    Article  PubMed  Google Scholar 

  66. Offner PJ (2004) Age of blood: does it make a difference? Crit Care 8 [Suppl 2]: S24–26

  67. Ouaknine-Orlando B, Samama C, Riou B et al. (1999) Role of the hematocrit in a rabbit model of arterial thrombosis and bleeding. Anesthesiology 90: 1454–1461

    Article  PubMed  Google Scholar 

  68. Peyrou V, Lormeau JC, Herault JP et al. (1999) Contribution of erythrocytes to thrombin generation in whole blood. Thromb Haemost 81: 400–406

    PubMed  Google Scholar 

  69. Raat NJ, Berends F, Verhoeven AJ et al. (2005) The age of stored red blood cell concentrates at the time of transfusion. Transfus Med 15: 419–423

    Article  PubMed  Google Scholar 

  70. Reed RL, Bracey AW Jr, Hudson JD et al. (1990) Hypothermia and blood coagulation: dissociation between enzyme activity and clotting factor levels. Circ Shock 32: 141–152

    PubMed  Google Scholar 

  71. Reed RL, Johnson TD, Hudson JD, Fischer RP (1992) The disparity between hypothermic coagulopathy and clotting studies. J Trauma 33: 465–470

    PubMed  Google Scholar 

  72. Santos MT, Valles J, Marcus AJ et al. (1991) Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. A new approach to platelet activation and recruitment. J Clin Invest 87: 571–580

    PubMed  Google Scholar 

  73. Sauaia A, Moore FA, Moore EE et al. (1995) Epidemiology of trauma deaths: a reassessment. J Trauma 38: 185–193

    PubMed  Google Scholar 

  74. Scherer RU, Giebler RM (2004) Perioperative Gerinnungsstörungen. Anasthesiol Intensivmed Notfallmed Schmerzther 39: 415–443

    Article  PubMed  Google Scholar 

  75. Schmied H, Kurz A, Sessler DI et al. (1996) Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 347: 289–292

    Article  PubMed  Google Scholar 

  76. Schreiber MA (2005) Coagulopathy in the trauma patient. Curr Opin Crit Care 11: 590–597

    Article  PubMed  Google Scholar 

  77. Schroeder S, Wichers M, Lier H (2003) Diagnostik und Therapie von komplexen Gerinnungsstörungen in der operativen Intensivtherapie. Anaesthesiol Intensivmed 44: 668–679

    Google Scholar 

  78. Small M, Lowe GD, Cameron E, Forbes CD (1983) Contribution of the haematocrit to the bleeding time. Haemostasis 13: 379–384

    PubMed  Google Scholar 

  79. Spahn DR, Rossaint R (2005) Coagulopathy and blood component transfusion in trauma. Br J Anaesth 95: 130–139

    Article  PubMed  Google Scholar 

  80. Stainsby D, MacLennan S, Hamilton PJ (2000) Management of massive blood loss: a template guideline. Br J Anaesth 85: 487–491

    PubMed  Google Scholar 

  81. Suzuki N, Fujimoto Z, Morita T et al. (2005) pH-Dependent structural changes at Ca(2+)-binding sites of coagulation factor IX-binding protein. J Mol Biol 353: 80–87

    Article  PubMed  Google Scholar 

  82. Turitto VT, Weiss HJ (1980) Red blood cells: their dual role in thrombus formation. Science 207: 541–543

    Article  PubMed  Google Scholar 

  83. Uijttewaal WS, Nijhof EJ, Bronkhorst PJ et al. (1993) Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. Am J Physiol 264: H1239–1244

    PubMed  Google Scholar 

  84. Valeri CR, MacGregor H, Cassidy G et al. (1995) Effects of temperature on bleeding time and clotting time in normal male and female volunteers. Crit Care Med 23: 698–704

    Article  PubMed  Google Scholar 

  85. Valeri CR, Cassidy G, Pivacek LE et al. (2001) Anemia-induced increase in the bleeding time: implications for treatment of nonsurgical blood loss. Transfusion 41: 977–983

    Article  PubMed  Google Scholar 

  86. Valles J, Santos MT, Aznar J et al. (1991) Erythrocytes metabolically enhance collagen-induced platelet responsiveness via increased thromboxane production, adenosine diphosphate release, and recruitment. Blood 78: 154–162

    PubMed  Google Scholar 

  87. Valles J, Santos MT, Aznar J et al. (2002) Platelet-erythrocyte interactions enhance alpha(IIb)beta(3) integrin receptor activation and P-selectin expression during platelet recruitment: down-regulation by aspirin ex vivo. Blood 99: 3978–3984

    Article  PubMed  Google Scholar 

  88. Vivien B, Langeron O, Morell E et al. (2005) Early hypocalcemia in severe trauma. Crit Care Med 33: 1946–1952

    Article  PubMed  Google Scholar 

  89. Wang HE, Callaway CW, Peitzman AB, Tisherman SA (2005) Admission hypothermia and outcome after major trauma. Crit Care Med 33: 1296–1301

    Article  PubMed  Google Scholar 

  90. Wang S, McDonnell EH, Sedor FA, Toffaletti JG (2002) pH effects on measurements of ionized calcium and ionized magnesium in blood. Arch Pathol Lab Med 126: 947–950

    PubMed  Google Scholar 

  91. Watts DD, Trask A, Soeken K et al. (1998) Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma 44: 846–854

    PubMed  Google Scholar 

  92. Wolberg AS, Meng ZH, Monroe DMI, Hoffman M (2004) A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma 56: 1221–122

    PubMed  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich bei Frau Melanie Stroman, Apotheke KKH Rendsburg, für die Berechnungen der Tab. 4 und bei Prof. Dr. B. Poetzsch, Institut für Experimentelle Hämatologie und Transfusionsmedizin der Universität Bonn, für die kritische Durchsicht des Manuskriptes.

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lier, H., Kampe, S. & Schröder, S. Rahmenbedingungen für eine intakte Hämostase. Anaesthesist 56, 239–251 (2007). https://doi.org/10.1007/s00101-006-1109-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-006-1109-1

Schlüsselwörter

Keywords

Navigation