Skip to main content
Log in

Neuromuskuläre Restblockaden

Klinische Konsequenzen, Häufigkeit und Vermeidungsstrategien

Residual neuromuscular blockades

Clinical consequences, frequency and avoidance strategies

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Muskelrelaxanzien können auch nach Anwendung in klinisch gebräuchlicher Dosierung zu lang anhaltenden Restblockaden führen, die das Risiko schwer wiegender postoperativer pulmonaler Komplikationen erhöhen. Selbst ohne zusätzliche Effekte von Analgetika, Sedativa oder Anästhetika kann eine partielle neuromuskuläre Blockade, die weder mit den Sinnen des Anästhesisten allein noch unter Zuhilfenahme eines einfachen Nervenstimulators zuverlässig ausgeschlossen werden kann (Train-of-Four [TOF]-Ratio: 0,5–0,9), neben der Reduktion der Vitalkapazität auch eine Obstruktion des oberen Atemwegs, Störungen der pharyngealen Funktion sowie eine Beeinträchtigung der hypoxischen Atemantwort bewirken. Das Ausmaß der neuromuskulären Erholung am Ende eines Eingriffs hängt sowohl von dem verwendeten Muskelrelaxans, der Dauer des Eingriffs als auch der Anästhesietechnik und möglicher Begleiterkrankungen des Patienten ab. So ist grundsätzlich davon auszugehen, dass es nach der Verwendung lang wirksamer Muskelrelaxanzien (Pancuronium) häufiger zu neuromuskulären Restblockaden kommt, als dies nach mittellang bzw. kurz wirksamen Substanzen der Fall ist. Wird der Verlauf einer neuromuskulären Blockade kontinuierlich während der gesamten Anästhesie mithilfe des quantitativen neuromuskulären Monitorings der TOF-Ratio überwacht, und nicht nur punktuell am Ende der Operation, so verspricht eine akzeleromyographisch (z. B. „TOF-watch“) gemessene TOF-Ratio von 1 eine adäquate Erholung der neuromuskulären Übertragung von den Effekten der Muskelrelaxanzien.

Abstract

Even after administration in routine clinical dosages, muscle relaxants can lead to long-lasting residual blockades which increase the risk of severe postoperative pulmonary complications. Even without the additional effects from analgetics, sedatives or anaesthetics, a partial neuromuscular blockade, which cannot reliably be avoided either by the anaesthetist alone or by the additional use of nerve stimulators (train-of-four [TOF] ratio 0.5-0.9), can cause reductions in the vital capacity and the hypoxic breathing response, as well as obstruction of the upper airway and disruption of pharangeal function. The extent of neuromuscular recovery after an operation depends on the muscle relaxant used, the duration of administration, the anaesthetic technique and possible accompanying illnesses of the patient. It must basically be assumed that residual neuromuscular blockades are more frequent after administration of slow acting muscle relaxants such as pancuronium, than after the use of medium or rapid acting substances. If the course of a neuromuscular blockade is continually monitored during the whole anaesthetic procedure using the TOF ratio and not only occasionally at the end, a TOF ratio of 1 measured with an acceleromyograph (e.g. TOF-watch) promises an adequate neuromuscular recovery from the effects of muscle relaxants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ali HH, Savarese JJ (1976) Monitoring of neuromuscular function. Anesthesiology 45:216–249

    PubMed  Google Scholar 

  2. Ali HH, Wilson RS, Savarese JJ (1975) The effect of tubocurarine on indirectly elicited train-of-four muscle response and respiratory measurements in humans. Br J Anaesth 47:570–574

    PubMed  Google Scholar 

  3. American Thoracic Society (1995) Standardisation of spirometry, 1994 update. Am J Respir Crit Care Med 152:1107–1136

    PubMed  Google Scholar 

  4. Arbous MS, Meursing AEE, Kleef JW van et al. (2005) Impact on anesthesia management characteristics on severe morbidity and mortality. Anesthesiology 102:257–268

    Article  PubMed  Google Scholar 

  5. Arora NS, Gal TJ (1981) Cough dynamics during progressive expiratory muscle weakness in healthy curarized subjects. J Appl Physiol 51:494–498

    PubMed  Google Scholar 

  6. Baillard C, Gehan G, Reboul-Marty J, Larmignat P, Samama CM, Cupa M (2000) Residual curarization in the recovery room after vecuronium. Br J Anaesth 84:394–395

    PubMed  Google Scholar 

  7. Baraka A (1975) Potentiation of suxamethonium blockade by neostigmine in patients with atypical cholinesterase. Br J Anaesth 47:416–418

    PubMed  Google Scholar 

  8. Begin P, Mathieu J, Almirall J, Grassino A (1977) Relationship between chronic hypercapnia and respiratory muscle weakness in myotonic dystrophy. Am J Respir Crit Care Med 156:133–139

    Google Scholar 

  9. Berg H, Roed J, Viby-Mogensen J, Mortensen CR, Engbäk J, Skovgaard LT, Krintel JJ (1997) Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 41:1095–1103

    PubMed  Google Scholar 

  10. Bevan DR, Smith CE, Donati F (1988) Postoperative neuromuscular blockade: a comparison between atracurium, vecuronium, and pancuronium. Anesthesiology 69:272–276

    PubMed  Google Scholar 

  11. Bevan DR, Donati F, Kopman AF (1992) Reversal of neuromuscular blockade. Anesthesiology 77:785–805

    PubMed  Google Scholar 

  12. Blobner M, Mann R (2001) Anästhesie bei Patienten mit Myasthenia gravis. Anaesthesist 50:484–493

    Article  PubMed  Google Scholar 

  13. Brodie BC (1811) Experiments and observations on the different modes in which death is produced by certain vegetable poisons. Philos Trans R Soc 101:194–195

    Google Scholar 

  14. Bye PT, Ellis ER, Issa FG, Donnelly PM, Sullivan CE (1990) Respiratory failure and sleep in neuromuscular disease. Thorax 45:241–247

    PubMed  Google Scholar 

  15. Capron F, Alla F, Hottier C, Meistelman C, Fuchs-Buder T (2004) Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9. Anesthesiology 100:1119–1124

    Article  PubMed  Google Scholar 

  16. Debaene B, Plaud B, Dilly MP, Donati F (2003) Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology 98:1042–1048

    Article  PubMed  Google Scholar 

  17. Eikermann M, Groeben H, Hüsing J, Peters J (2003) Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology 98:1333–1337

    Article  PubMed  Google Scholar 

  18. Eikermann M, Gröben H, Bünten B, Peters J (2005) Fade of pulmonary function during residual neuromuscular blockade. Chest 127:1703–1709

    Article  PubMed  Google Scholar 

  19. Eikermann M, Hasselmann C, Beiderlinden M, Peters J (2005) Force, fatigue, and contractile behaviour of skeletal muscle after clinical recovery from neuromuscular blockade. Anesthesiology 103:A1125

    Google Scholar 

  20. Eikermann M, Vogt FM, Dastgerdi MV, Herbstreit F, Peters J (2005) Inspiratory upper airway obstruction during partial neuromuscular blockade. Anesthesiology 103:A1114

    Google Scholar 

  21. Eikermann M, Grote T, Blobner M, Rex C, Groeben H, Peters J (2006) Postoperative upper airway obstruction after recovery of the TOF-ratio of the adductor pollicis muscle from neuromuscular blockade. Anesth Analg (in press)

  22. Eriksson LI (1996) Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants? Acta Anaesthesiol Scand 40:520–523

    PubMed  Google Scholar 

  23. Eriksson LI, Sundman E, Olsson R, Nilsson L, Witt H, Ekberg O, Kuylenstierna R (1997) Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 87:1035–1043

    Article  PubMed  Google Scholar 

  24. Frank SM, Fleisher LA, Olson KF et al. (1995) Multivariate determinants of early postoperative oxygen consumption in elderly patients. Effects of shivering, body temperature, and gender. Anesthesiology 83:241–249

    Article  PubMed  Google Scholar 

  25. Fuchs-Buder T, Mencke T (2001) Neuromuskuläres Monitoring. Anaesthesist 50:129–138

    Article  PubMed  Google Scholar 

  26. Fuchs-Buder T, Mencke T (2001) Use of reversal agents in day care procedures (with special reference to postoperative nausea and vomiting). Eur J Anaesth 18 [Suppl 23]:53–59

  27. Fuchs-Buder T, Tassonyi E (1996) Magnesium sulphate enhances residual neuromuscular block induced by vecuronium. Br J Anaesth 76:565–566

    PubMed  Google Scholar 

  28. Fuchs-Buder T, Hofmockel R, Geldner G, Diefenbach C, Ulm K, Blobner M (2003) Einsatz des neuromuskulären Monitorings in Deutschland. Anaesthesist 52:522–526

    PubMed  Google Scholar 

  29. Gal TJ, Goldberg SK (1981) Relationship between respiratory muscle strength and vital capacity during partial curarization in awake subjects. Anesthesiology 54:141–147

    PubMed  Google Scholar 

  30. Gal TJ, Smith TC (1976) Partial paralysis with d-tubocurarine and the ventilatory response to CO2: an example of respiratory sparing? Anesthesiology 45:22–28

    PubMed  Google Scholar 

  31. Gijsenbergh F, Ramael S, Houwing NM, Iersel T van (2005) First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology 103:695–703

    Article  PubMed  Google Scholar 

  32. Harper NJ, Martlew R, Strang T, Wallace M (1994) Monitoring neuromuscular block by acceleromyograph: comparison of the mini-accelerograph with the myograph. Br J Anaesth 72:411–414

    PubMed  Google Scholar 

  33. Jonsson M, Wyon N, Lindahl SG, Fredholm BB, Eriksson LI (2004) Neuromuscular blocking agents block carotid body neuronal nicotinic acetylcholine receptors. Eur J Pharmacol 497:173–180

    Article  PubMed  Google Scholar 

  34. Kleinschmidt S, Ziegeler S, Bauer C (2005) Cholinesterasehemmer: Stellenwert in Anästhesie, Intensivmedizin, Notfallmedizin und Schmerztherapie. Anaesthesist 54:791–799

    Article  PubMed  Google Scholar 

  35. Kopman AF, Sinha N (2003) Acceleromyography as a guide to anesthetic management: a case report. J Clin Anesth 15:145–148

    Article  PubMed  Google Scholar 

  36. Lee C (1975) Train-of-four quantification of competitive neuromuscular block. Anesth Analg 54:649–653

    PubMed  Google Scholar 

  37. Meistelman C, Fuchs-Buder T (2005) Benefit/risk ratio of neuromuscular blocking agents. In: Bannister J, Mellor I (eds) ESA refresher course book 2005, pp 87–91;http://www.euroanesthesia.org/education/rc2005vienna/9RC2.pdf. Cited 14 Dec 2005

  38. Meistelman C, Fuchs-Buder T, Debaene B, Plaud B (2005) Curarisation peropératoire. In: Conférénces d’actualisation. Les essentiels 2005. Elsevier, Paris, pp 403–418

  39. Melissant CF, Lammers JW, Demedts M (1995) Rigid external resistances cause effort dependent maximal expiratory and inspiratory flows. Am J Respir Crit Care Med 152:1709–1712

    PubMed  Google Scholar 

  40. Mencke T, Echternach M, Kleinschmidt S, Lux P, Barth V, Plinkert PK, Fuchs-Buder T (2003) Laryngeal morbidity and quality of tracheal intubation: a randomized, controlled trial. Anesthesiology 98:1049–1056

    Article  PubMed  Google Scholar 

  41. Miller RD (1976) Antagonism of neuromuscular blockade. Anesthesiology 44:318–329

    PubMed  Google Scholar 

  42. Samet A, Capron F, Alla F, Meistelman C, Fuchs-Buder T (2005) Single acceleromyographic train-of-four, 100 hertz tetanus or double burst stimulation: which test performs better to detect residual paralysis. Anesthesiology 1002:51–56

    Article  Google Scholar 

  43. Savarese JJ, Caldwell JE, Lien CA, Miller RD (2000) Pharmacology of muscle relaxants and their antagonists. In: Miller RD (ed) Anesthesia, 5th edn. Churchill Livingstone, Philadelphia, pp 412–490

  44. Schlaich N, Fuchs-Buder T (2001) Neuromuskuläres Monitoring: Die Wahl des Stimulationsmusters. Anaesthesist 49 [Suppl 1]:11–13

  45. Sparr HJ (2002) Cyclodextrine: Ein neues Konzept zur Antagonisierung von Muskelrelaxanzien. Anaesthesist 51:929–930

    Article  PubMed  Google Scholar 

  46. Sparr HJ, Beaufort TM, Fuchs-Buder T (2001) Newer neuromuscular blocking agents: how do they compare with established agents? Drugs 61:919–942

    PubMed  Google Scholar 

  47. Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI (2000) The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology 92:977–984

    Article  PubMed  Google Scholar 

  48. Varrato J, Siderowf A, Damiano P, Gregory S, Feinberg D, McCluskey L (2001) Postural change of forced vital capacity predicts some respiratory symptoms in ALS. Neurology 24:357–359

    Google Scholar 

  49. Viby-Mogensen J, Jensen E, Werner M, Kirkegaard-Nielsen H (1988) Measurement of acceleration: a new method of monitoring neuromuscular function. Acta Anaesthesiol Scand 32:45–48

    PubMed  Google Scholar 

  50. Wyon N, Joensen H, Yamamoto Y, Lindahl SG, Eriksson LI (1998) Carotid body chemoreceptor function is impaired by vecuronium during hypoxia. Anesthesiology 89:1471–1479

    Article  PubMed  Google Scholar 

  51. Yost CS, Maestrone E (1994) Clinical concentrations of edrophonium enhance desensitization of the nicotinic acetylcholine receptor. Anesth Analg 78:520–526

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fuchs-Buder.

Additional information

Dr. Matthias Eikermann ist Gastprofessor am „Sleep Disorders Research Program“ des Brigham and Woman’s Hospital und der Harvard Medical School, Boston (USA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs-Buder, T., Eikermann, M. Neuromuskuläre Restblockaden. Anaesthesist 55, 7–16 (2006). https://doi.org/10.1007/s00101-005-0959-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-005-0959-2

Schlüsselwörter

Keywords

Navigation