Skip to main content
Log in

Arterielle Pulskonturanalyse zur Messung des Herzindex unter Veränderungen der Vorlast und der aortalen Impedanz

Accuracy of pulse contour cardiac index measurements during changes of preload and aortic impedance

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die arterielle Pulskonturanalyse wurde zur Bestimmung des Herzindex (CI) sowohl bei herzchirurgischen als auch bei kritisch kranken Patienten während unterschiedlichen klinischen Bedingungen validiert. Der anhand der Pulskonturanalyse bestimmte Herzindex (CIPC) zeigt eine gute Übereinstimmung mit dem durch arterielle (CITD) oder durch pulmonalarterielle Thermodilution (CIPA) bestimmten Herzindex. Die Genauigkeit der Pulskonturanalyse unter Bedingungen des offenen Thorax mit Veränderungen der Vorlast und der aortalen Impedanz ist jedoch unklar. Daher wurden CIPC, CITD und CIPA in Abhängigkeit dieser Veränderungen durch Sternotomie verglichen.

Methodik

28 Patienten während elektiver koronarer Bypassoperation wurden untersucht. CIPC und CITD, sowie CIPA bei 6 Patienten, wurden vor sowie nach Sternotomie bestimmt, und die relativen Veränderungen ΔCIPC und ΔCITD und ΔCIPA berechnet.

Ergebnisse

Die Sternotomie resultierte bei 25 von 28 Patienten in einem signifikanten Anstieg des CI. Eine Regressionanalyse wurde zwischen CIPC und CITD vor bzw. nach Sternotomie (r2 = 0,87, p<0,0001, r2 = 0,88, p<0,0001) sowie zwischen CIPC und CIPA, vor bzw. nach Sternotomie (r2 = 0,85, p<0,0001, r2 = 0,93, p<0,01) und zwischen ΔCIPC and ΔCITD (r2 = 0,72, p<0,0001) durchgeführt. Eine Bland Altman-Analyse ergab für Bias (m) und Grenzen der Übereinstimmung (2SD) zwischen CIPC und CITD vor und nach Sternotomie sowie zwischen ΔCIPC und ΔCITD: m = –0,03 l/min/m2, 2SD = –0,34 bis 0,28 l/min/m2, m = –0,06 l/min/m2, 2SD = –0,45 bis 0,33 l/min/m2 und m = –0,02 l/min/m2, 2SD = –0,47 bis 0,44T l/min/m2.

Schlussfolgerung

Veränderungen der Vorlast und der aortalen Impedanz während Sternotomie beeinflussen nicht die Genauigkeit der arteriellen Pulskonturanalyse. CIPC, CITD, und CIPA zeigen unter diesen Bedingungen eine gute Übereinstimmung.

Abstract

Background

Cardiac index obtained by arterial pulse contour analysis (CIPC) demonstrated good agreement with arterial or pulmonary arterial thermodilution derived cardiac index (CITD, CIPA) in cardiac surgical or critically ill patients. However as the accuracy of pulse contour analysis during changes of the aortic impedance is unclear, we compared CIPC, CITD and CIPA during changes of preload and the aortic impedance as occurring during sternotomy.

Patients and methods

CIPC und CITD, were compared in 28 patients, (and CIPA in 6 patients) undergoing elective coronary artery bypass grafting, before and after sternotomy. The relative changes ΔCIPC und ΔCIPC were calculated.

Results

Sternotomy resulted in a significant increase in CI in 25 out of 28 patients. Regression analysis was performed between CIPC and CITD before and after sternotomy (r2 = 0.87, p<0.0001, r2 = 0.88, p<0.0001) as well as between CIPC and CIPA, before and after sternotomy (r2 = 0.85, p<0.0001, r2 = 0.93, p<0.01) and between ΔCIPC and ΔCITD (r2 = 0.72, p<0.0001). Bland Altman-Analysis for determining bias (m) and precision (2SD) between CIPC and CITD before and after sternotomy and between ΔCIPC and ΔCITD resulted in m = –0.03 L/min/m2, 2SD = –0.34 to 0.28 L/min/m2, m = –0.06 L/min/m2, 2SD = –0.45 to 0.33 L/min/m2 and m = –0.02 L/min/m2, SD = –0.47 to 0.44 L/min/m2.

Conclusion

Pulse contour analysis derived CIPC accurately reflects thermodilution derived CITD or CIPA during changes of preload and the aortic impedance as occurring during sternotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Balik M, Pachl J, Hendl J, Martin B, Jan P, Jan H (2002) Effect of the degree of tricuspid regurgitation on cardiac output measurements by thermodilution. Intensive Care Med 28:1117–1121

    PubMed  Google Scholar 

  2. Becker K Jr (1998) Resolved: a pulmonary artery catheter should be used in the management of the critically ill patient. Con J Cardiothorac Vasc Anesth 12:13–16

    Google Scholar 

  3. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    CAS  PubMed  Google Scholar 

  4. Buhre W, Weyland A, Kazmaier S, Hanekop GG, Baryalei MM, Sydow M, Sonntag H (1999) Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth 13:437–440

    CAS  PubMed  Google Scholar 

  5. Cerutti C, Gustin MP, Molino P, Paultre CZ (2001) Beat-to-beat stroke volume estimation from aortic pressure waveform in conscious rats: comparison of models. Am J Physiol Heart Circ Physiol 281:H1148–1155

    CAS  PubMed  Google Scholar 

  6. Connors AF Jr, Speroff T, Dawson NV et al. (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276:889–897

    PubMed  Google Scholar 

  7. Della Rocca G, Costa MG, Pompei L, Coccia C, Pietropaoli P (2002) Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 88:350–356

    PubMed  Google Scholar 

  8. Della Rocca G, Costa MG, Coccia C, Pompei L, Marco P di, Vilardi V, Pietropaoli P (2003) Cardiac output monitoring: aortic transpulmonary thermodilution and pulse contour analysis agree with standard thermodilution methods in patients undergoing lung transplantation. Can J Anaesth 50:707–711

    PubMed  Google Scholar 

  9. Felbinger TW, Reuter DA, Eltzschig HK, Moerstedt K, Goedje O, Goetz AE (2002) Comparison of pulmonary arterial thermodilution and arterial pulse contour analysis: evaluation of a new algorithm. J Clin Anesth 14:296–301

    PubMed  Google Scholar 

  10. Felbinger TW, Reuter DA, Eltzschig HK et al. (2005) Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis. J Clin Anesth 17:241–248

    PubMed  Google Scholar 

  11. Godje O, Hoke K, Lamm P, Schmitz C, Thiel C, Weinert M, Reichart B (1998) Continuous, less invasive, hemodynamic monitoring in intensive care after cardiac surgery. Thorac Cardiovasc Surg 46:242–249

    CAS  Google Scholar 

  12. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27:2407–2412

    CAS  PubMed  Google Scholar 

  13. Goedje O, Hoke K, Goetz AE et al. (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30:52–58

    PubMed  Google Scholar 

  14. Grigorov Tzenkov I, Arnal Velasco D, Perez Pena JM, Olmedilla Arnal L, Garutti Martinez I, Sanz Fernandez J (2003) Cardiac output by femoral arterial thermodilution-calibrated pulse contour analysis during liver transplantation: comparison with pulmonary artery thermodilution. Transplant Proc 35:1920–1922

    PubMed  Google Scholar 

  15. Hayashi K, Shigemi K, Shishido T, Sugimachi M, Sunagawa K (2000) Single-beat estimation of ventricular end-systolic elastance-effective arterial elastance as an index of ventricular mechanoenergetic performance. Anesthesiology 92:1769–1776

    CAS  PubMed  Google Scholar 

  16. Hoar PF, Stone JG, Faltas AN, Bendixen HH, Head RJ, Berkowitz BA (1980) Hemodynamic and adrenergic responses to anesthesia and operation for myocardial revascularization. J Thorac Cardiovasc Surg 80:242–248

    CAS  PubMed  Google Scholar 

  17. Jansen JR, Wesseling KH, Settels JJ, Schreuder JJ (1990) Continuous cardiac output monitoring by pulse contour during cardiac surgery. Eur Heart J 11 [Suppl I]:26–32

  18. Li JK, Cui T, Drzewiecki GM (1990) A nonlinear model of the arterial system incorporating a pressure-dependent compliance. IEEE Trans Biomed Eng 37:673–678

    CAS  PubMed  Google Scholar 

  19. Mielck F, Buhre W, Hanekop G, Tirilomis T, Hilgers R, Sonntag H (2003) Comparison of continuous cardiac output measurements in patients after cardiac surgery. J Cardiothorac Vasc Anesth 17:211–216

    PubMed  Google Scholar 

  20. Nishikawa T, Dohi S (1993) Errors in the measurement of cardiac output by thermodilution. Can J Anaesth 40:142–153

    CAS  PubMed  Google Scholar 

  21. Pinsky MR (2003) Probing the limits of arterial pulse contour analysis to predict preload responsiveness. Anesth Analg 96:1245–1247

    PubMed  Google Scholar 

  22. Rapoport J, Teres D, Steingrub J, Higgins T, McGee W, Lemeshow S (2000) Patient characteristics and ICU organizational factors that influence frequency of pulmonary artery catheterization. JAMA 283:2559–2567

    CAS  PubMed  Google Scholar 

  23. Rauch H, Muller M, Fleischer F, Bauer H, Martin E, Bottiger BW (2002) Pulse contour analysis versus thermodilution in cardiac surgery patients. Acta Anaesthesiol Scand 46:424–429

    CAS  PubMed  Google Scholar 

  24. Reuter DA, Felbinger TW, Moerstedt K, Weis F, Schmidt C, Kilger E, Goetz AE (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16:191–195

    PubMed  Google Scholar 

  25. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, Goetz AE (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398

    PubMed  Google Scholar 

  26. Reuter DA, Felbinger TW, Schmidt C, Moerstedt K, Kilger E, Lamm P, Goetz AE (2003) Trendelenburg positioning after cardiac surgery: effects on intrathoracic blood volume index and cardiac performance. Eur J Anaesthesiol 20:17–20

    CAS  PubMed  Google Scholar 

  27. Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, Goetz AE (2003) Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med 31:1399–1404

    PubMed  Google Scholar 

  28. Reuter DA, Goresch T, Goepfert MS, Wildhirt SM, Kilger E, Goetz AE (2004) Effects of mid-line thoracotomy on the interaction between mechanical ventilation and cardiac filling during cardiac surgery. Br J Anaesth 92:808–813

    CAS  PubMed  Google Scholar 

  29. Rodig G, Prasser C, Keyl C, Liebold A, Hobbhahn J (1999) Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth 82:525–530

    CAS  PubMed  Google Scholar 

  30. Sakka SG, Reinhart K, Wegscheider K, Meier-Hellmann A (2000) Is the placement of a pulmonary artery catheter still justified solely for the measurement of cardiac output? J Cardiothorac Vasc Anesth 14:119–124

    CAS  PubMed  Google Scholar 

  31. Sandham JD, Hull RD, Brant RF et al. (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    PubMed  Google Scholar 

  32. Segers P, Stergiopulos N, Westerhof N (2002) Relation of effective arterial elastance to arterial system properties. Am J Physiol Heart Circ Physiol 282:H1041–1046

    CAS  PubMed  Google Scholar 

  33. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451

    CAS  PubMed  Google Scholar 

  34. Tannenbaum GA, Mathews D, Weissman C (1993) Pulse contour cardiac output in surgical intensive care unit patients. J Clin Anesth 5:471–478

    CAS  PubMed  Google Scholar 

  35. Wesseling KH, Wit B de, Weber JAP, Smith NT (1983) A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Phys 5:16–52

    Google Scholar 

  36. Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74:2566–2573

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Felbinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felbinger, T.W., Goepfert, M.S., Goresch, T. et al. Arterielle Pulskonturanalyse zur Messung des Herzindex unter Veränderungen der Vorlast und der aortalen Impedanz. Anaesthesist 54, 755–762 (2005). https://doi.org/10.1007/s00101-005-0847-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-005-0847-9

Schlüsselwörter

Keywords

Navigation