Skip to main content

Advertisement

Log in

Fibrinolysis in trauma: a review

  • Review Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Fibrinolytic dysregulation is an important mechanism in traumatic coagulopathy. It is an incompletely understood process that consists of a spectrum ranging from excessive breakdown (hyperfibrinolysis) and the shutdown of fibrinolysis. Both hyperfibrinolysis and shutdown are associated with excess mortality and post-traumatic organ failure. The pathophysiology appears to relate to endothelial injury and hypoperfusion, with several molecular markers identified in playing a role. Although there are no universally accepted diagnostic tests, viscoelastic studies appear to offer the greatest potential for timely identification of patients presenting with fibrinolytic dysregulation. Treatment is multimodal, involving prompt hemorrhage control and resuscitation, with controversy surrounding the use of antifibrinolytic drug therapy. This review presents the current evidence on the pathophysiology, diagnostic challenges, as well as the management of this hemostatic dysfunction.

Level of evidence: Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30. doi:10.1097/01.TA.0000069184.82147.06.

    Article  PubMed  Google Scholar 

  2. Tauber H, Innerhofer P, Breitkopf R, Westermann I, Beer R, El Attal R, Strasak A, Mittermayr M. Prevalence and impact of abnormal ROTEM assays in severe blunt trauma: results of the “diagnosis and treatment of trauma-induced coagulopathy (DIA-TRE-TIC) study. Br J Anaesth. 2011;107(3):378–87. doi:10.1093/bja/aer158.

    Article  CAS  PubMed  Google Scholar 

  3. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, Banerjee A, Sauaia A. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7. doi:10.1097/TA.0000000000000341. (discussion 817).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am. 2007;21(1):1–11. doi:10.1016/j.hoc.2006.11.004.

    Article  PubMed  Google Scholar 

  5. Bajzar L, Nesheim ME, Tracy PB. The profibrinolytic effect of activated protein C in clots formed from plasma is TAFI-dependent. Blood. 1996;88(6):2093–100.

    CAS  PubMed  Google Scholar 

  6. Ferreira CN, Sousa MDO. A cell-based model of coagulation and its implications. Rev Bras Hematol e Hemoter. 2010;32(5):416–21. doi:10.1590/S1516-84842010000500016.

    Article  Google Scholar 

  7. Hoffman M. Remodeling the blood coagulation cascade. J Thromb Thrombolysis. 2003;16(1/2):17–20. doi:10.1023/B:THRO.0000014588.95061.28.

    Article  CAS  PubMed  Google Scholar 

  8. Jakubowski HV, Owen WG. Macromolecular specificity determinants on thrombin for fibrinogen and thrombomodulin. J Biol Chem. 1989;264(19):11117–21.

    CAS  PubMed  Google Scholar 

  9. Moore H, Moore E, Gonzalez E. Fibrinolysis. In: Gonzalez E, Moore H, Moore E, editors. Trauma induced coagulopathy. 1st ed. Cham: Springer International Publishing; 2016. pp. 135–47. doi:10.1007/978-3-319-28308-1_9.

    Chapter  Google Scholar 

  10. Cotton B, Harvin J, Kostousouv V, Minei KM, Radwan Z, Schöchl H, Wade CE, Holcomb JB, Matijevic N. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg. 2012;73(2):365–70. doi:10.1097/TA.0b013e31825c1234.

    Article  CAS  PubMed  Google Scholar 

  11. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC, Pittet JF. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64(5):1211–7. doi:10.1097/TA.0b013e318169cd3c. 1217.

    Article  PubMed  Google Scholar 

  12. Kashuk JL, Moore EE, Sawyer M, Wohlauer M, Pezold M, Barnett C, Biffl WL, Burlew CC, Johnson JL, Sauaia A. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg. 2010;252(3):434. doi:10.1097/SLA.0b013e3181f09191.

    PubMed  Google Scholar 

  13. Brohi K, Cohen MJ, Ganter MT, Matthay M a, Mackersie RC, Pittet J-F. Acute traumatic coagulopathy: initiated by hypoperfusion, modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8. doi:10.1097/01.sla.0000256862.79374.31.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Williams-Johnson JA, McDonald AH, Strachan GG, Williams EW. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2) a randomised, placebo-controlled trial. The Lancet. 2010;376(6):612–24. doi:10.1016/S0140-6736(10)60835-5.

    Google Scholar 

  15. Rezaie AR. Vitronectin functions as a cofactor for rapid inhibition of activated protein C by plasminogen activator inhibitor-1: implications for the mechanism of profibrinolytic action of activated protein C. J Biol Chem. 2001;276(19):15567–70. doi:10.1074/jbc.C100123200.

    Article  CAS  PubMed  Google Scholar 

  16. Davenport RA, Guerreiro M, Frith D, Rourke C, Platton S, Cohen M, Pearse R, Thiemermann C, Brohi C. Activated protein C drives the hyperfibrinolysis of acute traumatic coagulopathy. Anesthesiology. 2017;126(1):115–27. doi:10.1097/ALN.0000000000001428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Solomon C, Traintinger S, Ziegler B, Hanke A, Rahe-Meyer N, Voelckel W, Schöchl H. Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost. 2011;106(2):322–30. doi:10.1160/TH11-03-0175.

    Article  CAS  PubMed  Google Scholar 

  18. Ostrowski SR, Henriksen HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, Cotton BA, Holcomb JB, Wade CE, Johansson PI. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: a prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg. 2017. doi:10.1097/TA.0000000000001304.

    PubMed  Google Scholar 

  19. Chakrabarti R, Hocking E, Fearnley G. Reaction pattern to three stresses—electroplexy, surgery, and myocardial infarction—of fibrinolysis and plasma fibrinogen. J Clin Pathol. 1969;22(6):659–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, Sauaia A, Cotton BA. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2540 severely injured patients. J Am Coll Surg. 2016;222(4):347–55. doi:10.1016/j.jamcollsurg.2016.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leeper C, Neal M, McKenna C, Sperry J, Gaines B. Abnormalities in fibrinolysis at the time of admission are associated with deep vein thrombosis, mortality, and disability in a pediatric trauma population. J Trauma Acute Care Surg. 2017;82(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  22. Moore HB, Moore EE, Lawson P, Gonzalez E, Fragoso M, Morton AP, Goboni F, Chapman MP, Sauaia A, Baneree A, et al. Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock. Surgery. 2015;158(2):386–92. doi:10.4315/0362-028X.JFP-13-395.Knowledge.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Macko A, Moore H, Cap A, Meledeo M, Moore E, Sheppard F. Tissue injury suppresses fibrinolysis after hemorrhagic shock in nonhuman primates (rhesus macaque). J Trauma Acute Care Surg. 2017;82(4):750–7. doi:10.1097/TA.0000000000001379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoffman M, Monroe DMI. A cell-based model of hemostasis. Thromb Haemost. 2001;85(6):958–65.

    CAS  PubMed  Google Scholar 

  25. Kowalski O, Kopec M, Niewiarowski S. An evaluation of the euglobulin method for the determination of fibrinolysis. J Clin Pathol. 1959;215(12):215–8.

    Article  Google Scholar 

  26. Smith AA, Jacobson LJ, Miller BI, Hathaway WE, Manco-Johnson MJ. A new euglobulin clot lysis assay for global fibrinolysis. Thromb Res. 2004;112(5–6):329–37. doi:10.1016/j.thromres.2004.01.001.

    Google Scholar 

  27. Levrat A, Gros A, Rugeri L, Inaba K, Floccard B, Negrier C, David JS. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth. 2008;100(6):792–7. doi:10.1093/bja/aen083.

    Article  CAS  PubMed  Google Scholar 

  28. Theusinger OM, Wanner G a, Emmert MY, Billeter A, Eismon J, Seifert B, Simmen HP, Spahn DR, Baulig W. Hyperfibrinolysis diagnosed by rotational thromboelastometry (ROTEM) is associated with higher mortality in patients with severe trauma. Anesth Analg. 2011;113(5):1003–12. doi:10.1213/ANE.0b013e31822e183f.

    Article  PubMed  Google Scholar 

  29. Johansson PI, Sørensen AM, Perner A, Welling KL, Wanscher M, Larsen CF. Ostrowski SR disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Crit Care. 2011;15(6):R272. doi:10.1186/cc10553.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Johansson PI, Stissing T, Bochsen L, Ostrowski SR. Thrombelastography and tromboelastometry in assessing coagulopathy in trauma. Scand J Trauma Resusc Emerg Med. 2009;17:1–8. doi:10.1186/1757-7241-17-45.

    Article  Google Scholar 

  31. Schöchl H, Nienaber U, Hofer G, Voelckel W, Jambor C, Scharbert G, Kozek-Langenecker S, Solomon C. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55. doi:10.1186/cc8948.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Luddington RJ. Thrombelastography/thromboelastometry. Clin Lab Haematol. 2005;27(2):81–90. doi:10.1111/j.1365-2257.2005.00681.x.

    Article  CAS  PubMed  Google Scholar 

  33. Carroll RC, Craft RM, Langdon RJ, Clanton CR, Snider CC, Wellons DD, Dakin PA, Lawson CM, Enderson BL, Kurek SJ. Early evaluation of acute traumatic coagulopathy by thrombelastography. Transl Res. 2009;154(1):34–9. doi:10.1016/j.trsl.2009.04.001.

    Article  PubMed  Google Scholar 

  34. Brenni M, Worn M, Brüesch M, Spahn DR, Ganter MT. Successful rotational thromboelastometry-guided treatment of traumatic haemorrhage, hyperfibrinolysis and coagulopathy. Acta Anaesthesiol Scand. 2010;54(1):111–7. doi:10.1111/j.1399-6576.2009.02132.x.

    Article  CAS  PubMed  Google Scholar 

  35. Schaden E, Kimberger O, Kraincuk P, Baron DM, Metnitz PG, Kozek-Langenecker S. Perioperative treatment algorithm for bleeding burn patients reduces allogeneic blood product requirements. Br J Anaesth. 2012;109(3):376–81. doi:10.1093/bja/aes186.

    Article  CAS  PubMed  Google Scholar 

  36. Schöchl H, Nienaber U, Maegele M, Hochleitner G, Primavesi F, Steitz B, Arndt C, Hanke A, Voelckel W, Solomon C. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011;15(2):R83. doi:10.1186/cc10078.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Afshari A, Wikkelsø A, Brok J, Am M, Wetterslev J, Afshari A, Wikkelsø A, Brok J, Møller AM, Wetterslev J. TEG or ROTEM to monitor haemotherapy versus usual care in patients with massive transfusion (review). Cochrane Database Syst Rev. 2013. doi:10.1002/14651858.CD007871.pub2.Copyright.

    PubMed  Google Scholar 

  38. Genét GF, Ostrowski SR, Sørensen AM, Johansson PI. Detection of tPA-induced hyperfibrinolysis in whole blood by RapidTEG, KaolinTEG, and functional fibrinogenTEG in healthy individuals. Clin Appl Thromb Hemost. 2012;18(6):638–44. doi:10.1177/1076029611434527.

    Article  PubMed  Google Scholar 

  39. Moore H, Moore E, Chapman M, Huebner BR, Einersen PM, Oushy S, Silliman CC, Banerjee A, Sauaia A. Viscoelastic tissue plasminogen activator challenge predicts massive transfusion in 15 min. J Am Coll Surg. 2017;225(1):138–47.

    Article  PubMed  Google Scholar 

  40. Ives C, Inaba K, Branco BC, Okoye O, Schochl H, Talving P, Lam L, Shulman I, Nelson J, Demetriades D. Hyperfibrinolysis elicited via thromboelastography predicts mortality in trauma. J Am Coll Surg. 2012;215(4):496–502. doi:10.1016/j.jamcollsurg.2012.06.005.

    Article  PubMed  Google Scholar 

  41. Schöchl H, Frietsch T, Pavelka M, Jámbor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31. doi:10.1097/TA.0b013e31818b2483.

    Article  PubMed  Google Scholar 

  42. Davenport R, Manson J, De’Ath H, Platton S, Coates A, Allard S, Hart D, Pearse R, Pasi KJ, MacCallum P. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652–8. doi:10.1097/CCM.0b013e3182281af5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lang T, Bauters A, Braun SL, Po B. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinolysis. 2005;16(6):301–10.

    Article  PubMed  Google Scholar 

  44. Sharma R, Letson HL, Smith S, Dobson GP. Tranexamic acid leads to paradoxical coagulation changes during cardiac surgery: a pilot rotational thromboelastometry study. J Surg Res. 2016;7:1–13. doi:10.1016/j.jss.2017.05.006.

    Article  Google Scholar 

  45. Kutcher ME, Cripps MW, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Redick BJ, Nelson MF, Cohen MJ. Criteria for empiric treatment of hyperfibrinolysis after trauma. J Trauma Acute Care Surg. 2012;73(1):87–93. doi:10.1097/TA.0b013e3182598c70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Napolitano LM, Cohen MJ, Cotton BA, Schreiber MA, Moore EE. Tranexamic acid in trauma. J Trauma Acute Care Surg. 2013;74(6):1575–86. doi:10.1097/TA.0b013e318292cc54.

    Article  PubMed  Google Scholar 

  47. Morrison JJ, Ross JD. Is viscoelastic evidence of hyperfibrinolysis the ideal indicator for tranexamic acid administration in trauma? Letters to the editor. J Trauma Acute Care Surg. 2013;33(3):436–7.

    Google Scholar 

  48. Olldashi F, Kerçi M, Zhurda T, Ruçi K, Banushi A, Traverso MS, Jiménez J, Balbi J, Dellera C, Svampa S. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. The Lancet. 2011;377(9771):1096–101. doi:10.1016/S0140-6736(11)60278-X. (1101.e1–1101.e2).

    Article  Google Scholar 

  49. Lin GG, Scott JG. The incidence and magnitude of fibrinolytic activation in trauma patients: a rebuttal. J Thromb Haemost. 2013;11(7):130–4. doi:10.1016/j.pestbp.2011.02.012.Investigations.

    Google Scholar 

  50. Leeper CM, Neal MD, McKenna CJ, Gaines BA. Trending fibrinolytic dysregulation. Ann Surg. 2017;266(3):505–15. doi:10.1097/SLA.0000000000002355.

    Article  Google Scholar 

  51. Nagler M, ten Cate H, Kathriner S, Casutt M, Bachmann LM, Wuillemin WA. Consistency of thromboelastometry analysis under scrutiny: results of a systematic evaluation within and between analysers. Thromb Haemost. 2014;111(6):1161–6. doi:10.1160/TH13-10-0870.

    Article  CAS  PubMed  Google Scholar 

  52. Scarpelini S, Rhind SG, Nascimento B, Tien H, Shek PN, Peng HT, Huang H, Pinto R, Speers V, Reis M. Normal range values for thromboelastography in healthy adult volunteers. Braz J Med Biol Res. 2009;42(12):1210–7.

    Article  CAS  PubMed  Google Scholar 

  53. Gall L, Brohi K, Davenport R. Diagnosis and treatment of hyperfibrinolysis in trauma (a European perspective). Semin Thromb Hemost. 2017;43(2):224–34. doi:10.1055/s-0036-1598001.

    Article  PubMed  Google Scholar 

  54. TEG ® 5000 Thrombelastograph ® Hemostasis System User Manual. Haemoscope Corporation. 2008. http://www.haemonetics.com/en/products/devices/surgical-and-diagnostic-devices/teg-5000. Accessed 1 Sep 2017.

  55. Ostrowski SR, Sørensen AM, Larsen CF, Johansson PI. Thrombelastography and biomarker profiles in acute coagulopathy of trauma: a prospective study. Scand J Trauma Resusc Emerg Med. 2011;19(1):64. doi:10.1186/1757-7241-19-64.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Raza I, Davenport R, Rourke C, Platton S, Manson J, Spoors C, Khan S, De’Ath HD, Allard S, Hart DP. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11(2):307–14. doi:10.1111/jth.12078.

    Article  CAS  PubMed  Google Scholar 

  57. Theusinger OM, Wanner GA, Emmert MY, Billeter A, Eismon J, Seifert B, Simmen H-P, Spahn DR, Baulig W. Hyperfibrinolysis diagnosed by rotational thromboelastometry (ROTEM) is associated with higher mortality in patients with severe trauma. Anesth Analg. 2011;113(5):1003–12. doi:10.1213/ANE.0b013e31822e183f.

    Article  PubMed  Google Scholar 

  58. Fenger-Eriksen C, Lindberg-Larsen M, Christensen AQ, Ingerslev J, Sørensen B. Fibrinogen concentrate substitution therapy in patients with massive haemorrhage and low plasma fibrinogen concentrations. Br J Anaesth. 2008;101:769–73. doi:10.1093/bja/aen270.

    Article  CAS  PubMed  Google Scholar 

  59. Nienaber U, Innerhofer P, Westermann I, Schochl H, Attal R, Breitkopf R, Maegele M. The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury. 2011;42(7):697–701. doi:10.1016/j.injury.2010.12.015.

    Article  PubMed  Google Scholar 

  60. Huebner BR, Moore EE, Moore HB, Sauaia A, Stettler G, Dzieciatkowska M, Hansen K. Freeze-dried plasma enhances clot formation and inhibits fibrinolysis in the presence of tissue plasminogen activator similar to pooled liquid plasma. Transfusion. doi:10.1111/trf.14149.

  61. Kostousov V, Wang Y-WW, Cotton BA, Wade CE, Holcomb JB, Matijevic N. Influence of resuscitation fluids, fresh frozen plasma and antifibrinolytics on fibrinolysis in a thrombelastography-based, in-vitro, whole-blood model. Blood Coagul Fibrinolysis. 2013;24(5):489–97. doi:10.1097/MBC.0b013e32835e4246.

    Article  CAS  PubMed  Google Scholar 

  62. Morton A, Moore E, Moore H, Gonzalez E, Chapman MP, Peltz E, Banerjee A, Silliman C. Hemoglobin-based oxygen carriers promote systemic hyperfibrinolysis that is both dependent and independent of plasmin. J Surg Res. 2017;213:166–70. doi:10.1016/j.jss.2015.04.077.

    Article  CAS  PubMed  Google Scholar 

  63. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9. doi:10.1001/archsurg.2011.287.

    Article  CAS  PubMed  Google Scholar 

  64. Cole E, Davenport R, Willett K, Brohi K. Tranexamic acid use in severely injured civilian patients and the effects on outcomes: a prospective cohort study. Ann Surg. 2015;261(2):390–4. doi:10.1097/SLA.0000000000000717.

    Article  PubMed  Google Scholar 

  65. Louro J, Andersen K, Dudaryk R. Correction of severe coagulopathy and hyperfibrinolysis by tranexamic acid and recombinant factor VIIa in a cirrhotic patient after trauma: a case report. A A Case Rep. 2017;9(5):144–7. doi:10.1213/XAA.0000000000000550.

    Article  PubMed  Google Scholar 

  66. Swendsen H, Galante JM, Utter GH, Bateni S, Scherer LA, Schermer CR. Tranexamic acid use in trauma: effective but not without consequences. Trauma Treat. 2013. doi:10.4172/2167-1222.1000179.

    Google Scholar 

  67. Pabinger I, Fries D, Schöchl H, Streif W, Toller W. Tranexamic acid for treatment and prophylaxis of bleeding and hyperfibrinolysis. Wien Klin Wochenschr. 2017;129(9–10):303–16. doi:10.1007/s00508-017-1194-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Walsh M, Shreve J, Thomas S, Moore E, Moore H, Hake D, Pohlman T, Davis P, Ploplis V, Piscoya A, et al. Fibrinolysis in Trauma: “myth,” “reality,” or “something in between”. Semin Thromb Hemost. 2017;43(2):200–12. doi:10.1055/s-0036-1597900.

    Article  PubMed  Google Scholar 

  69. Astedt B. Clinical pharmacology of tranexamic acid. Scand J Gastroenterol Suppl. 1987;137:22–5.

    Article  CAS  PubMed  Google Scholar 

  70. Roberts I, Shakur H, Ker K, Coats T. Antifibrinolytic drugs for acute traumatic injury (review). Cochrane Database Syst Rev. 2015. doi:10.1002/14651858.CD004896.pub4.Copyright.

    PubMed Central  Google Scholar 

  71. Zickenrott V, Greb I, Henkelmann A, Balzer F, Casu S, Kaufne L, von Heymann C, Zacharowski K, Weber CF. Tranexamic acid in the German emergency medical service: a national survey. Anaesthesist. 2017;66(4):249–55. doi:10.1007/s00101-017-0277-5.

    Article  CAS  PubMed  Google Scholar 

  72. Huebner BR, Dorlac WC, Cribari C. Tranexamic acid use in prehospital uncontrolled hemorrhage. Wilderness Environ Med. 2017;28(2S):S50–S60. doi:10.1016/j.wem.2016.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Roberts I, Prieto-Merino D, Manno D. Mechanism of action of tranexamic acid in bleeding trauma patients: an exploratory analysis of data from the CRASH-2 trial. Crit Care. 2014;18(6):685. doi:10.1186/s13054-014-0685-8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Roberts I. Tranexamic acid in trauma: how should we use it? J Thromb Haemost. 2015;13(Supple1):S195–9. doi:10.1111/jth.12878.

    Article  CAS  PubMed  Google Scholar 

  75. Roberts I, Perel P, Prieto-Merino D, Shakur H, Coats T, Hunt B, Lecky F, Brohi K, Willett K. CRASH-2 collaborators. Effect of tranexamic acid on mortlity in patients with traumatic bleeding: prespecified analysis of data from randomised controlled trial. Bmj. 2012;345:e5839. doi:10.1136/bmj.e5839.

    Article  PubMed  PubMed Central  Google Scholar 

  76. MacLaren R, Stringer K. Emerging role of anticoagulants and fibrinolytics in the treatment of acute respiratory distress syndrome. Pharmacotherapy. 2007;27(6):860–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hardaway R, Harkey H, Tyroch A, WIlliams C, Vazquez Y, Krause G. Treatment of severe acute respiratory distress syndrome: a final report on a phase I study. Am Surg. 2001;67(4):377–82.

    CAS  PubMed  Google Scholar 

  78. ClinicalTrials.gov—a service of the US National Institutes of Health. https://clinicaltrials.gov. Accessed 4 Sep 2017.

  79. Kalavrouziotis D, Voisine P, Mohammadi S, Dionne S, Dagenais F. High-dose tranexamic acid is an independent predictor of early seizure after cardiopulmonary bypass. Ann Thorac Surg. 2012;93(1):148–54. doi:10.1016/j.athoracsur.2011.07.085.

    Article  PubMed  Google Scholar 

  80. Hunter GRW, Young GB. Seizures after cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25(2):299–305. doi:10.1053/j.jvca.2010.08.004.

    Article  PubMed  Google Scholar 

  81. Dewan Y, O Komolafe E, Mejia-Mantilla J, Perel P, Roberts I, Shakur H. CRASH-3—tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials. 2012. doi:10.1186/1745-6215-13-87.

    PubMed  PubMed Central  Google Scholar 

  82. PATCH—trauma study. The pre-hospital anti-fibrinolytics for traumatic coagulopathy and haemorrhage study. https://www.patchtrauma.org. Accessed 4 September 2017.

Download references

Author information

Authors and Affiliations

Authors

Contributions

The review was conceived by JOJ, TER and JJM. The literature search was performed by MJM and KAS. All the studies were reviewed by MJM, KAS, JOJ, TER and JJM. The manuscript was written by MJM, KAS, JOJ, JJM. All authors reviewed the final manuscript. MJM and KAS contributed equally to the manuscript.

Corresponding author

Correspondence to M. J. Madurska.

Ethics declarations

Conflict of interest

Marta J Madurska, Kaylyn A. Sachse, Jan O. Jansen, Todd E. Rasmussen, and Jonathan J. Morrison all declare that they have no conflict of interest.

Additional information

M. J. Madurska and K. A. Sachse have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madurska, M.J., Sachse, K.A., Jansen, J.O. et al. Fibrinolysis in trauma: a review. Eur J Trauma Emerg Surg 44, 35–44 (2018). https://doi.org/10.1007/s00068-017-0833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-017-0833-3

Keywords

Navigation