Skip to main content
Log in

„Rise of the machines?“

Linksventrikuläre Unterstützungssysteme zur Behandlung der schweren Herzinsuffizienz

Rise of the machines?

Left ventricular assist devices for treatment of severe heart failure

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Der Einsatz von linksventrikulären Unterstützungssystemen („left ventricular assist device“, LVAD) zur Behandlung der schweren Herzinsuffizienz hat in den vergangenen Jahren an Bedeutung gewonnen. Angesichts eines chronischen Mangels an Spenderorganen übersteigt die Anzahl der weltweiten LVAD-Implantationen bereits heute die der Herztransplantationen um ein Vielfaches. Mithilfe von Pumpensystemen neuerer Generation mit nichtpulsatilem Fluss konnten das Überleben, die Lebensqualität sowie die Beschwerdesymptomatik der Patienten im Vergleich zur optimierten medikamentösen Therapie verbessert werden. Neben der Überbrückung zur Herztransplantation („bridge to transplant“) hat sich die Dauertherapie („destination therapy“) als Implantationsstrategie etabliert. Eine sorgfältige Patientenselektion ist für ein gutes Ergebnis nach LVAD-Implantation essenziell; große Bedeutung hat dabei auch die Risikoabschätzung eines postoperativen Rechtsherzversagens. Die Hospitalisierungsrate unter LVAD-Therapie ist weiterhin hoch, trotz der schrittweisen Ausweitung der Therapie auf weniger kranke Herzinsuffizienzpatienten. Ein effektives peri- und postoperatives Management kann dazu beitragen, die Komplikationsrate (insbesondere Blutungen, Infektionen, thrombembolische Ereignisse und Rechtsherzversagen) zu senken und die ermutigenden Ergebnisse der mechanischen Kreislaufunterstützung weiter zu verbessen.

Abstract

The use of left ventricular assist devices (LVAD) as a treatment for severe heart failure has gained momentum in recent years. Even at this stage the number of worldwide LVAD implantations far exceeds the volume of heart transplantations in view of the chronic shortage of donor organs. Third generation continuous flow assist devices have helped to improve survival, quality of life and symptom burden of heart failure patients in comparison to a regimen of optimal medication management. Alongside bridging to transplantation, destination therapy has become an established strategy of LVAD implantation. A careful patient selection process is crucial for a good clinical outcome after device implantation and risk assessment for postoperative right ventricular failure is of particular importance in this context. The rate of hospitalization during LVAD support is still high, despite the step-wise attempts to widen the indications to less severely ill heart failure patients. An effective perioperative and postoperative management will help to lower the incidence of complications (e.g. bleeding, infections, thromboembolic events and right ventricular failure) and to improve the encouraging results of mechanical circulatory support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Braunwald E (2015) The war against heart failure. Lancet 385:812–824

    Article  PubMed  Google Scholar 

  2. Yancy CW, Lopatin M, Stevenson LW, De Marco T et al (2006) Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol 47(1):76–84

    Article  PubMed  Google Scholar 

  3. Miller LW (2011) Left ventricular assist devices are underutilized. Circulation 123:1552–1558

    Article  PubMed  Google Scholar 

  4. Mancini D, Paolo C, Colombo PC (2015) Left ventricular assist devices. A rapidly evolving alternative to transplant. J Am Coll Cardiol 65:2542–2555

    Article  PubMed  Google Scholar 

  5. Eurotransplant – Annual Report 2013

  6. Deutsche Stiftung Organtransplantation (2014) Organspende und Transplantation in Deutschland. Jahresbericht 2014

  7. Liotta D (2002) Early clinical application of assisted circulation. Tex Heart Inst J 29(3):229–230

    PubMed Central  PubMed  Google Scholar 

  8. DeVries WC, Anderson JL, Joyce LD, Anderson FL et al (1984) Clinical use of the total artificial heart. N Engl J Med 310:273–278

    Article  CAS  PubMed  Google Scholar 

  9. Stewart GC, Givertz MM (2012) Mechanical circulatory support for advanced heart failure: patients and technology in evolution. Circulation 125:1304–1315

    Article  PubMed  Google Scholar 

  10. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345:1435–1443

    Article  CAS  PubMed  Google Scholar 

  11. Miller LW, Pagani FD, Russel SD, John R et al (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357:885–896

    Article  CAS  PubMed  Google Scholar 

  12. Starling RC, Naka Y, Boyle AJ, Gonzalez-Stawinski G et al (2011) Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 57:1890–1898

    Article  PubMed  Google Scholar 

  13. Aaronsson KD, Slaughter MS, Miller LW, McGee EC et al (2012) Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation 125:3191–3200

    Article  Google Scholar 

  14. Slaughter MS, Rogers JG, Milano CA, Russel SD et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251

    Article  CAS  PubMed  Google Scholar 

  15. Jorde UP, Kushwaha SS, Tatooles AJ, Naka J et al (2014) Results of the destination therapy post-Food and Drug Administration approval study with a continuous flow left ventricular assist device: a prospective study using the INTERMACS registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 63:1751–1757

    Article  PubMed  Google Scholar 

  16. Slaughter MS, Pagani FD, McGee EC, Birks EJ et al (2013) HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. J Heart Lung Transplant 32:675–683

    Article  PubMed  Google Scholar 

  17. Rogers JG, Aaronson KD, Boyle AJ, Russel SD et al (2010) Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol 55:1826–1834

    Article  PubMed  Google Scholar 

  18. Setoguchi S, Stevenson LW, Schneeweiss S (2007) Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J 154:260–266

    Article  PubMed  Google Scholar 

  19. Mancini DM, Eisen H, Kussmaul W, Mull R et al (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786

    Article  CAS  PubMed  Google Scholar 

  20. Levy WC, Mozaffarian D, Linker DT, Farrar DJ et al (2009) Can the Seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy? J Heart Lung Transplant 28:231–236

    Article  PubMed  Google Scholar 

  21. Kirklin JK, Naftel DC, Pagani FD, Kormos RK et al (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Heart LungTransplant 33:555–564

    Article  Google Scholar 

  22. Stevenson LW, Pagani FD, Young JB, Jessup M et al (2009) INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant 28:535–541

    Article  PubMed  Google Scholar 

  23. Potapov EV, Stepanenko A, Dandel M, Kukucka M et al (2008) Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant 27:1275–1281

    Article  PubMed  Google Scholar 

  24. Grant AD, Smedira NG, Starling RC, Marwick TH (2012) Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol 60:521–528

    Article  PubMed  Google Scholar 

  25. Mann DL, Felker GM (2016) Heart failure. A companion to Braunwald’s Heart Disease, 3. Aufl. Elsevier, Amsterdam, S 674–676

  26. Etz CD, Welp HA, Tjan TD, Hoffmeier A et al (2007) Medically refractory pulmonary hypertension: treatment with nonpulsatile left ventricular assist devices. Ann Thorac Surg 83:1697–1695

    Article  PubMed  Google Scholar 

  27. Pagani FD, Milano CA, Tatooles AJ, Bhat G et al (2015) HeartWare HVAD for the treatment of patients with advanced heart failure ineligible for cardiac transplantation: results of the ENDURANCE destination therapy trial. J Heart Lung Transplant 34(4 Suppl):S9

    Article  Google Scholar 

  28. Hasin T, Marmor Y, Kremers W, Topilski Y et al (2013) Readmissions after implantation of axial flow left ventricular assist device. J Am Coll Cardiol 61:153–163

    Article  PubMed  Google Scholar 

  29. Stulak JM, Lee D, Haft JW, Romano MA et al (2014) Gastrointestinal bleeding and subsequent risk of thromboembolic events during support with a left ventricular assist device. J Heart Lung Transplant 33:60–64

    Article  PubMed  Google Scholar 

  30. Slaughter MS, Rogers JG, Milano CA, Russell SD et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251

    Article  CAS  PubMed  Google Scholar 

  31. Uriel N, Pak SW, Jorde UP, Jude B et al (2010) Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol 56:1207–1213

    Article  PubMed  Google Scholar 

  32. Demirozu ZT, Radovancevic R, Hochman LF, Gregoric ID et al (2011) Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant 30:849–853

    Article  PubMed  Google Scholar 

  33. Patlolla B, Beygui R, Haddad F (2013) Right-ventricular failure following left ventricular assist device implantation. Curr Opin Cardiol 28:223–233

    Article  PubMed  Google Scholar 

  34. Kormos RL, Teuteberg JJ, Pagani FD, Russel SD et al (2010) Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139:1316–1324

    Article  PubMed  Google Scholar 

  35. Mehra MR, Stewart GC, Uber PA (2014) The vexing problem of thrombosis in long-term mechanical circulatory support. J Heart Lung Transplant 33:1–11

    Article  PubMed  Google Scholar 

  36. Cohen DG, Thomas JD, Freed BH, Rich JD et al (2015) Echocardiography and continuous-flow left ventricular assist devices. JACC Heart Fail 3:554–564

    Article  PubMed  Google Scholar 

  37. Jorde UP, Uriel N, Nahumi N, Bejar D et al (2014) Prevalence, significance, and management of aortic insufficiency in continuous flow left ventricular assist device recipients. Circ Heart Fail 7:310–319

    Article  PubMed  Google Scholar 

  38. Fang JC, Stehlik J (2013) Moving beyond „bridges". JACC Heart Fail 1(5):379–381

    Article  PubMed  Google Scholar 

  39. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW et al (2010) Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant 29:1–10

    Article  PubMed Central  PubMed  Google Scholar 

  40. Teuteberg JJ, Stewart GC, Jessup M, Kormos RL et al (2013) Implant strategies change over time and impact outcomes: insights from the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). JACC Heart Fail 1(5):369–378

    Article  PubMed  Google Scholar 

  41. Rogers JG, Boyle AJ, OʼConnell JB, Horstmanshof DA et al (2015) Risk assessment and comparative effectiveness of left ventricular assist device (LVAD) and medical management in ambulatory heart failure patients: design and rationale of the ROADMAP clinical trial. Am Heart J 169(2):205–210

    Article  PubMed  Google Scholar 

  42. Estep JD, Starling RC, Horstmanshof DA, Rogers JG et al (2015) Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients (ROADMAP). J Heart Lung Transplant 34(4 Suppl):S80

    Article  Google Scholar 

  43. Metra M, Ponikowski P, Dickstein K, McMurray JJ et al (2007) Advanced chronic heart failure: a position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 9(6–7):684–694

    Article  PubMed  Google Scholar 

  44. McMurray JJ, Adamopoulos, Anker SD, Auricchio A et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33(14):1787–1847

  45. Holman WL (2012) Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS): what have we learned and what will we learn? Circulation 126 (11):1401–1406

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ujeyl.

Ethics declarations

Interessenkonflikt

A. Ujeyl und M. Krüger geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujeyl, A., Krüger, M. „Rise of the machines?“. Herz 40, 972–979 (2015). https://doi.org/10.1007/s00059-015-4365-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-015-4365-5

Schlüsselwörter

Keywords

Navigation