Skip to main content
Log in

Elastic properties and Windkessel function of the human aorta

  • Invited Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

An understanding of the role of the aortic elastic properties indicates their relevance at several sites of cardiovascular function. Acting as an elastic buffering chamber behind the heart (the Windkessel function), the aorta and some of the proximal large vessels store about 50% of the left ventricular stroke volume during systole. In diastole, the elastic forces of the aortic wall forward this 50% of the volume to the peripheral circulation, thus creating a nearly continuous peripheral blood flow. This systolic-diastolic interplay represents theWindkessel function, which has an influence not only on the peripheral circulation but also on the heart, resulting in a reduction of left ventricular afterload and improvement in coronary blood flow and left ventricular relaxation. The elastic resistance (or stiffness), which the aorta sets against its systolic distention, increases with aging, with an increase in blood pressure, and with pathological changes such as atherosclerosis. This increased stiffness leads to an increase in systolic blood pressure and a decrease in diastolic blood pressure at any given mean pressure, an increase in systolic blood velocity, an increase in left ventricular afterload, and a decrease in subendocardial blood supply during diastole, and must be considered a major pathophysiological factor, for example, in systolic hypertension. The elastic properties of the aortic Windkessel can be assessed in vivo in humans in several ways, most easily by measuring the pulse wave velocity along the aorta. The higher this velocity, the higher the elastic resistance, that is, the stiffness. Other methods depend on assessment of the ratio between pulse pressure and aortic volume changes (ΔP/ΔV), which can be assessed noninvasively by ultrasonic or tomographic methods. All assessments of vessel stiffness have to take into account the direct effect of current blood pressure, and thus judgements about influences of interventions rely on an unchanged blood pressure. Alternatively, to derive the “intrinsic” stiffness of the aortic wall one has to correct for the effect of the blood pressure present. Recently reports about pharmacologic influences on the elastic properties of the aorta have emerged in the literature. Angiotensin-converting enzyme (ACE) inhibitors and nitric oxide (NO) donors seem to directly reduce the elastic resistance of the aorta. This effect, in addition to other effects on blood pressure and the peripheral circulation, could have major clinical relevance as an additional mechanism for unloading the left ventricle, improving coronary circulation, and reducing the pulsatile stress of the arterial system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anonymous. Aortic distensibility and screening for coronary atheroma.Lancet 1991;338:288.

  • Asmar R, Benetos A, Brahimi M, Chaouche K, Safar M. Arterial and antihypertensive effects of nitrendipine: A double-blind comparison versus placebo.J Cardiovasc Pharmacol 1992;20:858–863.

    Google Scholar 

  • Athanassopoulos G, Olympios C, Foussas S, Cokkinos DV. Atheromatous plaques in the thoracic aorta are associated with decreased aortic distensibility evaluated with transesophageal echocardiography and automatic boundaries detection.J Am Coll Cardiol 1994;23:146A.

    Google Scholar 

  • Avolio AP, Deng FQ, Li WQ, et al. Effects of aging on arterial distensibility in populations with high and low prevalance of hypertension: Comparison between urban and rural communities in China.Circulation 1985;71:202–210.

    Google Scholar 

  • Bader H. Dependence of wall stress in the human thoracic aorta on age and pressure.Circ Res 1967;20:354–361.

    Google Scholar 

  • Bader H. Importance of the gerontology of elastic arteries in the development of essential hypertension.Clin Physiol Biochem 1983;1:36–56.

    Google Scholar 

  • Bergel DH. The static elastic properties of the arterial wall.J Physiol (Lond) 1961;156:445–457.

    Google Scholar 

  • Blankehorn DH, Kramsch DM. Reversal of atherosis and sclerosis: The two components of atherosclerosis.Circulation 1989;79:1–7.

    Google Scholar 

  • Böger A, Wezler K. Zur Wirkung der Muskulatur auf die Elastizität der lebenden Arterienwand.Klin Wschr 1936;559–562.

  • Bramwell JC, Hill AY. Velocity of transmission of the pulsewave and elasticity of arteries.Lancet 1922;I:891–892.

    Google Scholar 

  • Bramwell JC, Downing AC, Hill AY. The effect of blood pressure on the extensibility of the human artery.Heart 1923;10:289–300.

    Google Scholar 

  • Breithaupt K, Erb K, Neumann B, Wolf GK, Belz GG. Comparison of four non-invasive techniques to measure stroke volume: Dual-beam Doppler echoaortography, electrical impedance cardiography, mechanospygmography and M-mode echocardiography of the left ventricle.Am J Noninvas Cardiol 1990;225:203–209.

    Google Scholar 

  • Breithaupt K, Belz GG, Sinn W. Non-invasive assessments of compliance of the aortic Windkessel in man derived from pulse pressure/storage volume ratio and from pulse wave velocity.Clin Physiol Biochem 1992a;9:18–25.

    Google Scholar 

  • Breithaupt K, Leschinger M, de Mey C, Belz GG. Aortic compliance in hypertension—effects of cilazapril and hydrochlorothiazide can be distinguished [letter].Blood Pressure 1992b;1:187.

    Google Scholar 

  • Cabrera E, Levenson J, Armentano R, Barra J, Pichel R, Simon A. Aortic pulsatile pressure and diameter response to intravenous perfusions of angiotension, norepinephrine, and epinephrine in conscious dogs.Cardiovasc Pharmacol 1988;12:643–649.

    Google Scholar 

  • De Cesaris R, Ranieri G, Filitti V, Adriani A. Large artery compliance in essential hypertension. Effects of calcium antagonism and β-blocking.Am J Hypertens 1992;5:624–628.

    Google Scholar 

  • Darne B, Girerd X, Safar M, Cambien F, Guize L. Pulsatile versus steady component of blood pressure: A cross-sectional analysis and a prospective analysis on cardiovascular mortality.Hypertension 1989;13:392–400.

    Google Scholar 

  • Dart AM, Lacombe F, Yeoh JK, et al. Aortic distensibility in patients with isolated hypercholesterolaemia, coronary disease, or cardiac transplant.Lancet 1991;338:270–273.

    Google Scholar 

  • Dzau VJ. Vascular renin-angiotensin system and vascular protection.J Cardiovasc Pharmacol 1993;22(Suppl 5):S1-S9.

    Google Scholar 

  • Emeriau JP. Patients with systolic hypertension.ACE Inhibition 1993;2:24–28.

    Google Scholar 

  • Farrar DJ, Bond G, Riley WA, Sawyer JK. Anatomic correlates of aortic pulse wave velocity and carotid artery elasticity during atherosclerosis progression and regression in monkeys.Circulation 1991;83:1754–1763.

    Google Scholar 

  • Farrar DJ, Green HD, Wagner WD. Reduction in pulse wave velocity and improvement of aortic distensibility accompanying regression of atherosclerosis in the Rhesus monkey.Circ Res 1980;47:425–432.

    Google Scholar 

  • Ferguson JJ III, Randall OS. Hemodynamic correlates of arterial compliance.Cathet Cardiovasc Diagn 1986;12:376–380.

    Google Scholar 

  • Frank O. Die Grundform des arteriellen Pulses.Z Biol 1899;37:483–526.

    Google Scholar 

  • Frank O. Die Elastizität der Blutgefäße.Z Biol 1920;71:255–272.

    Google Scholar 

  • Fry DL. Responses of the arterial wall to certain physical factors. In: Porter R, Knight J, eds.Atherogenesis: Initiating Factors. Ciba Foundation Symposium 12 (New Series). Amsterdam: Elsevier, 1973:93–125.

    Google Scholar 

  • Gebert G.Physiologie als Grundlage der klinischen Medizin. Stuttgart, Schattauer: 1987:67–68.

  • Gobrecht H, Bergmann-Schäfer.Lehrbuch der Experimentalphysik Band I Mechanik, Akustik, Wärme. Berlin: W de Gruyter, 1974:230, 241.

    Google Scholar 

  • Gudbrandsson T, Julius S, Krause L, et al. Correlates of the estimated arterial compliance in the population of Tecumseh, Michigan.Blood Pressure 1992;1:27–34.

    Google Scholar 

  • Hamazaki T, Urakaze M, Sawazakis S, Yamazaki K, Taki H, Yano S. Comparison of pulse wave velocity of the aorta between inhabitants of fishing and farming villages in Japan.Atherosclerosis 1988;73:157–160.

    Google Scholar 

  • Handler CE, Child A, Light ND, Dorrance DE. Mitral valve prolapse, aortic compliance, and skin collagen in joint hypermobility syndrome.Br Heart J 1985;54:501–508.

    Google Scholar 

  • Hirata K, Triposkiadis F, Sparks E, Bowen J, Wooley CF, Boudoulas H. The Marfan syndrome: Abnormal aortic elastic properties.J Am Coll Cardiol 1991;18:57–63.

    Google Scholar 

  • Hopkins KD, Lehmann ED, Gosling RG, Parker JR, Sönksen PH. Biochemical correlates of aortic distensibility in vivo in normal subjects.Clin Sci 1993;84:593–597.

    Google Scholar 

  • Isnard RN, Pannier BM, Laurent S, London GM, Diebold B, Safar ME. Pulsatile diameter and elastic modulus of the aortic arch in essential hypertension: A noninvasive study.J Am Coll Cardiol 1989;13:399–405.

    Google Scholar 

  • Kannel WB, Wolf PA, McGee DL, Dawber TR, McNamara P, Castelli WP. Systolic blood pressure, arterial rigidity, and risk of stroke.JAMA 1981;245:125–129.

    Google Scholar 

  • Kannel WB, Dawber TR, McGee DL. Perspectives on systolic hypertension: The Framingham study.Circulation 1986;61:1179–1182.

    Google Scholar 

  • Kohno M, Kumada T, Ozaki M, et al. Evaluation of aortic wall distensibility by aortic pressure-dimension relation: Effects of nifedipine on aortic wall.Cardiovasc Res 1987;21:305–312.

    Google Scholar 

  • Laogun AA, Gosling RG. In vivo arterial compliance in man.Clin Phys Physiol Meas 1982;3:201–212.

    Google Scholar 

  • Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls.Circ Res 1966;18:278–292.

    Google Scholar 

  • Lehmann ED, Gosling RG. Measuring aortic distensibility.Lancet 1991;338:1075.

    Google Scholar 

  • Lehmann ED, Gosling RG, Fatemi-Langroudi B, Taylor MG. Noninvasive Doppler ultrasound technique for the in vivo assessment of aortic compliance.J Biomed Eng 1992a;14:250–256.

    Google Scholar 

  • Lehmann ED, Gosling RG, Sönksen PH. Arterial wall compliance in diabetes.Diabet Med 1992b;9:114–119.

    Google Scholar 

  • Lehmann ED, Watts GF, Fatemi-Langroudi B, Gosling RG. Aortic compliance in young patients with heterozygous familial hypercholesterolaemia.Clin Sci 1992c;83:717–721.

    Google Scholar 

  • Lehmann ED, Watts GF, Gosling RG. Aortic distensibility and hypercholesterolemia.Lancet 1992d;340:1171–1172.

    Google Scholar 

  • Lehmann ED, Gosling RG, Parker JR, deSilva T, Taylor MG. A blood pressure independent index of aortic distensibility.Br J Radiol 1993a;66:126–131.

    Google Scholar 

  • Lehmann ED, Hopkins KD, Weissberger AJ, Gosling RG, Sönksen PH. Aortic distensibility in growth hormone deficient adults.Lancet 1993b;341:309.

    Google Scholar 

  • Lehmann ED, Parker JR, Hopkins KD, Taylor MG, Gosling RG. Validation and reproducibility of pressure-corrected aortic distensibility measurements using pulse-wave-velocity Doppler ultrasound.J Biomed Eng 1993c;15:221–228.

    Google Scholar 

  • London GM, Marchais SJ, Safar ME, et al. Aortic and large artery compliance in end-stage renal failure.Kidney Int 1990;37:137–142.

    Google Scholar 

  • London GM, Guerin A, Pannier B, Marchais SJ, Benetos A, Safar M. Increased systolic pressure in chronic uremia. Role of arterial wave reflections.Hypertension 1992;20:10–19.

    Google Scholar 

  • Mohiaddin RH, Underwood SR, Bogren HG, et al. Regional aortic compliance studied by magnetic resonance imaging: The effects of age, training, and coronary artery disease.Br Heart J 1989;62:90–96.

    Google Scholar 

  • Neutel JM, Smith HG, Graettinger F, Weber MA. Dependency of arterial compliance on circulating neuroendocrine and metabolic factors in normal subjects.Am J Cardiol 1992;69:1340–1344.

    Google Scholar 

  • Nichols WW, O'Rourke MF.McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 3rd ed. Philadelphia: Edward Arnold, Lea and Febiger, 1990.

    Google Scholar 

  • Ochi H, Shimada T, Ikuma I, Morioka S, Moriyama K. Effect of decrease in aortic compliance on the isovolumic relaxation period of the left ventricle in man.Am J Noninvas Cardiol 1991;5:149–154.

    Google Scholar 

  • Opie L.Angiotensin Converting Enzyme Inhibitors. Scientific Basis for Clinical Use. New York: Wiley-Liss, 1992.

    Google Scholar 

  • O'Rourke MF.Arterial Function in Health and Disease. Edinburgh: Churchill Livingstone, 1982.

    Google Scholar 

  • O'Rourke MF. Arterial stiffness, systolic blood pressure and logical treatment of arterial hypertension.Hypertension 1990;15:339–347.

    Google Scholar 

  • O'Rourke MF. Pulse wave mechanics revisited: Relevance to therapy of cardiovascular disease with calcium antagonists.Heart Vessels 1992;7:113–122.

    Google Scholar 

  • Perret F, Mooser V, Hayoz D, et al. Evaluation of arterial compliance pressure curves. Effect of antihypertensive drugs.Hypertension 1991;18(Suppl II):II77-II83.

    Google Scholar 

  • Randall OS, Westerhof N, Van den Bos GC, Alexander BS. Reliability of stroke volume to pulse pressure rate for estimating and detecting changes in arterial compliance.J Hypertens 1986;4:S293-S296.

    Google Scholar 

  • Rutan GH, Kuller LH, Neaton JD, Wentworth DN, McDonald RH, McFate-Smith W. Mortality associated with diastolic hypertension among men screened for Multiple Risk Factor Intervention Trial.Circulation 1988;77:504–514.

    Google Scholar 

  • Safar ME, Pannier B, Laurent S, London GM. Calcium entry blockers and arterial compliance in hypertension.J Cardiovasc Pharmacol 1989;14(Suppl 10):S1-S6.

    Google Scholar 

  • Safar ME, Levy BI, Laurent S, London GM. Hypertension and the arterial system: Clinical and therapeutic aspects.J Hypertens 1990;8(Suppl 7):S113-S119.

    Google Scholar 

  • Safar ME, Boutouyrie P, Tual JL, Safavian T. A critical review of ischemic heart disease and therapeutic trials of hypertension.Cor Art Dis 1992;3:149–156.

    Google Scholar 

  • Schimmler W. Untersuchungen zu Elastizitätsproblemen der Aorta. Statistische Korrelation der Pulswellengeschwindigkeit zu Alter, Geschlecht und Blutdruck.Arch Kreislauf-forschung 1965a;47:189–233.

    Google Scholar 

  • Schimmler W. Uber die Altersumwandlung der elastischen Eigenschaften des Aorta-Iliaca Rohres beim Menschen.Klin Wschr 1965b;43:587–590.

    Google Scholar 

  • Seely S. Aortic distensibility.Lancet 1991;338:696–697.

    Google Scholar 

  • Simon AC, Levenson J, Bouthier JD, Safar M. Effects of chronic administration of enalapril and propranolol on the large arteries in essential hypertension.J Cardiovasc Pharmacol 1985;7:856–861.

    Google Scholar 

  • Simon A, O'Rourke M, Levenson J. Arterial distensibility and its effect on wave reflection and cardiac loading in cardiovascular disease.Cor Art Dis 1991;2:1111–1120.

    Google Scholar 

  • Sinn W. Die Elastizität der Arterien und ihre Bedeutung für die Dynamik des arteriellen Systems. Akademie der Wissenschaften und der Literatur Mainz 1956;11:642–832.

    Google Scholar 

  • Slama MA, Benetos A, Pannier B, et al. Study of non-invasive methods of investigating the elastic properties of the thoracic aorta.Arch Mal Coeur Vaiss 1992;85(SI1):47–50.

    Google Scholar 

  • Spence JD. Effects of antihypertensive drugs and blood velocity. In: Schettler G, Nerem RM, Schmid-Schönbein H, Mörl H, Diehm C, eds.Fluid Dynamics as a Localizing Factor for Atherosclerosis. Berlin: Springer-Verlag, 1983:141–144.

    Google Scholar 

  • Stratos C, Stefanidis C, Kallikazaros I, Boudoulas H, Toutouzas P. Ascending aorta distensibility abnormalities in hypertensive patients and response to nifedipine administration.Am J Med 1992;93:505–512.

    Google Scholar 

  • Stefanidis C, Karayannacos PE, Boudoulas H, et al. Medial necrosis and acute aortic distensibility following removal of the vasa vasorum of canine ascending aorta.Cardiovasc Res 1993;27:951–956.

    Google Scholar 

  • Stefanidis C, Wooley CF, Bush CA, Kolibash AJ, Boudoulas H. Aortic distensibility in coronary artery disease.Am J Cardiol 1987;59:1300–1304.

    Google Scholar 

  • Stefanidis C, Stratos C, Boudoulas H, Kourouklis C, Toutouzas P. Distensibility of the ascending aorta: Comparison of invasive and non-invasive techniques in healthy men and in men with coronary artery disease.Eur Heart J 1990;11:990–996.

    Google Scholar 

  • Thomas JR, Asmar RG, Safar ME. Effects of perindopril on structural and functional changes in hypertensive arteries.South Afr Med J 1991(Suppl):6–9.

  • Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults.Circulation 1993;88:1456–1462.

    Google Scholar 

  • Wahlquist ML, Lo CS, Myers KA. Fish intake and arterial wall characteristics in healthy people and diabetic patients.Lancet 1989;ii:944–946.

    Google Scholar 

  • Watanabe H, Ohtsuka S, Kakihana M, Sugishita Y. Coronary circulation in dogs with an experimental decrease in aortic compliance.J Am Coll Cardiol 1993;21:1497–1506.

    Google Scholar 

  • Watkins RW, Sybertz EJ, Antonellis A, Pula K. Effects of spiraprilic acid, an angiotensin converting enzyme inhibitor, on large artery compliance in anestethized dogs.Arch Intern Pharmacodyn Ther 1987;290:222–234.

    Google Scholar 

  • Watkins RW, Sybertz EJ, Antonellis A, Pula K, Rivelli M. Effects of the antihypertensive dilevalol on aortic compliance in anesthetized dogs.J Cardiovasc Pharmacol 1988a;12:42–50.

    Google Scholar 

  • Watkins RW, Sybertz EJ, Pula K, Antonellis A. Comparative effects of verapamil, diltiazem and nifedipine on aortic compliance in anesthetized dogs.Arch Intern Pharmacodyn Ther 1988b;293:134–142.

    Google Scholar 

  • Wezler K. Abhängigkeit der Arterienelastizität von Alter und dem Zustand der Wandmuskulatur (Untersuchungen am Lebenden).Z Kreislaufforschg 1935;27:721–745.

    Google Scholar 

  • Wezler K. Zur Windkessel theorie von E.H. Weber und O. Frank. In: Stauch M, ed.Konzeptionswandel in 50 Jahren Kreislaufphysiologie. Baden-Baden: G. Witzstrock, 1980:8–26.

    Google Scholar 

  • Wezler K, Böger A. Die Dynamik des arteriellen Systems.Ergebn Physiol 1939;41:291–606.

    Google Scholar 

  • Wiggers CJ. The circulation and circulation research in perspective. In: Hamilton WF, ed.Handbook of Physiology, Section 2 Circulation, Volume 1. American Society of Physiology, Washington, D.C.; 1962:1–10.

    Google Scholar 

  • Zanchetti A, Chalmers JP, Arakawa K, et al. The 1993 guide-lines for the management of mild hypertension: Memorandum from a WHO/ISH meeting.Blood Pressure 1993;2:86–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belz, G.G. Elastic properties and Windkessel function of the human aorta. Cardiovasc Drug Ther 9, 73–83 (1995). https://doi.org/10.1007/BF00877747

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877747

Key words

Navigation