Skip to main content

Evidence Negating the Healthy Worker Eff ect

  • Chapter

Calabrese in speaking of historical blunders with respect to dose—response relationships in toxicology said: The effects of this century-long conflict have been as destructive as they have been overlooked, affecting the questions that toxicologists ask and assess, the biological models selected and often the endpoints measured, design of studies, the types of resources needed and employed in toxicological research, exposure standards for carcinogens and non-carcinogens, the cost of environmental and occupational health standards, approaches to risk communication for the general public, and a whole host of clinical opportunities to exploit for patient benefit, amongst others [1]. Contributing to the dose-response blunders are proponents of the LNT assumption who attribute radiation hormesis to the healthy worker effect (HWE) [2, 3].

The current peer review system for many journals with respect to hormesis is “institutionally” influenced by a type of toxicological political “correctness” in applying the LNT assumption to epidemiological studies of radiation risk [1]. The use of the HWE as a mantra-like explanation for potential benefit from low dose radiation is actually censoring-like behavior that has become routine in many publications without adequate scientific explanation or evidence. Proponents of the LNT consistently consider a positive cancer response as correct and a negative (beneficial) response in need of correction. The HWE is used irrespective of the magnitude of change to avoid invoking the other obvious scientific conclusion, that there is a benefit to be had from exposure to low dose ionizing radiation.

The use of the LNT assumption is “a deeply immoral use of our scientifi c heritage”

(Lauriston Taylor)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Calabrese EJ (2007) Historical blunders: how toxicology got the dose-response relationship half right. Cell Mol Biol 51:643–654

    Google Scholar 

  2. Howe GR, Chiarelli AM, Lindsay JP (1988) Components and modifiers of the healthy worker effect: evidence from three occupational cohorts and implications for industrial compensation. Am J Epidemiol 128:1364–1375

    CAS  PubMed  Google Scholar 

  3. Howe GR, Zablotska LB, Fix JJ et al (2004) Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res 162:517–526

    Article  CAS  PubMed  Google Scholar 

  4. Kojiro K (1999) The healthy worker effect in a long-term follow-up population. Jpn J Cancer Clin 45:1307–1310

    Google Scholar 

  5. Friedman GD, Collen MF, Fireman BH (1986) Multiphasic health checkup evaluation: a 16-year follow-up. J Chronic Dis 39:453–463

    Article  CAS  PubMed  Google Scholar 

  6. Luckey TD (1991) Radiation hormesis. CRC, Boca Raton, FL

    Google Scholar 

  7. Arrighi HM, Hertz-Picciotto L (1994) The evolving concept of the healthy worker survivor effect. Epidemiology 5:189–196

    Article  CAS  PubMed  Google Scholar 

  8. Stewart AM (1990) Healthy worker and healthy survivor effects in relation to the cancer risks of radiation workers. Am J Ind Med 17:151–154

    Article  CAS  PubMed  Google Scholar 

  9. Franks P, Gold MR, Clancy CM (1996) Use of care and subsequent mortality: the importance of gender. Health Serv Res 31:347–363

    CAS  PubMed  Google Scholar 

  10. Brett GZ (1968) The value of lung cancer detection by six-monthly chest radiographs. Thorax 23:414–420

    Article  CAS  PubMed  Google Scholar 

  11. Wilde J (1989) A 10 year follow-up of smi-annual screening for early detection of lung cancer in the Erfurt County, GDR. Eur Respir J 2:656–662

    CAS  PubMed  Google Scholar 

  12. Frost JK, Ball WC, Levin ML et al (1984) Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Johns Hopkins study. Am Rev Respir Dis 130:549–554

    CAS  PubMed  Google Scholar 

  13. Berlin NI (2000) Overview of the NCI Cooperative early lung cancer detection program. Cancer 89:2349–2351

    Article  CAS  PubMed  Google Scholar 

  14. Melamed MR (2000) Lung cancer screening results in the National Cancer Institute New York study. Cancer 89:2356–2362

    Article  CAS  PubMed  Google Scholar 

  15. Kubik A, Polak J (1986) Lung cancer detection. Results of a randomized prospective study in Czechoslovakia. Cancer 57:2427–2437

    Article  CAS  PubMed  Google Scholar 

  16. Manser RL, Irving LB, Byrnes G et al (2003) Screening for lung cancer: a systematic review and meta-analysis of controlled trials. Thorax 58:784–789

    Article  CAS  PubMed  Google Scholar 

  17. Bach PB, Kelley MJ, Tate RC, McCrory DC (2003) Screening for lung cancer: a review of the current literature. Chest 123:72S–82S

    Article  PubMed  Google Scholar 

  18. Lin K, Lipsitz R, Miller T, Janakiraman S (2008) Benefits and harms of prostate-specificantigen screening for prostate cancer: an evidence for update for the U.S. Preventive Services Task Force. Ann Intern Med 149:192–199

    PubMed  Google Scholar 

  19. Schroder FH, Hugosson J, Roobol MJ et al (2009) Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360:1320–1328

    Article  PubMed  Google Scholar 

  20. Andriole GL, Crawford ED, Grubb RL et al (2009) Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360:1310–1319

    Article  CAS  PubMed  Google Scholar 

  21. Skelcher B (2001) Healthy worker effect. J Radiol Prot 21:71–72

    Article  CAS  PubMed  Google Scholar 

  22. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation (2007) Health risks from exposure to low levels of ionizing radiation: BEIR VII — phase 2. National Academies Press, Washington, DC

    Google Scholar 

  23. Vrijheid M, Cardis E, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: design, epidemiological methods and descriptive results. Radiat Res 167:361–379

    Article  CAS  PubMed  Google Scholar 

  24. Li C-Y, Sung F-C (1999) A review of the healthy worker effect in occupational epidemiology. Occup Med 49:225–229

    Article  CAS  Google Scholar 

  25. Fornalski KW, Dobrzynski L (2010) The healthy worker effect and nuclear industry workers. Dose Response (in press)

    Google Scholar 

  26. Arrighi HM, Hertz-Picciotto I (1994) The evolving concept of the healthy worker survivor effect. Epidemiol 5:189–196

    Article  Google Scholar 

  27. Steenland K, Deddens J, Salvan A et al (1996) Negative bias in exposure-response trends in occupational studies: modeling the healthy worker survivor effect. Am J Epidemiol 143:202–210

    CAS  PubMed  Google Scholar 

  28. Baillargeon J, Wilkinson GS (1999) Characteristics of the healthy survivor effect among male and female Hanford workers. Am J Ind Med 35:343–347

    Article  CAS  PubMed  Google Scholar 

  29. Tubiana M, Aurengo A (2006) Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the Joint Report of the Academiedes Sciences (Paris) and of the Academie Nationale de Medecine. Int J Low Radiat 2:1–19

    Article  Google Scholar 

  30. Baillargeon J (2001) Characteristics of the healthy worker effect. Occup Med 16:359–366

    CAS  PubMed  Google Scholar 

  31. Luckey TD (2007) Documented optimum and threshold for ionizing radiation. Int J Nuclear Law 1:378–409

    Article  Google Scholar 

  32. IDSP (1988) Industrial Disease Standard Panel (ODP). Report No. 3. Report to the workers compensation board on the healthy worker effect, Toronto, Canada

    Google Scholar 

  33. UNSCEAR (1994) Annex B: Adaptive responses to radiation in cells and organisms. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York, pp 185–272

    Google Scholar 

  34. Cardis E, Vrijheid M, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416

    Article  CAS  PubMed  Google Scholar 

  35. Acquavella JF, Wiggs LD, Waxweiler RJ et al (1985) Mortality among workers at the Pantex weapons facility. Health Phys 48:735–746

    Article  CAS  PubMed  Google Scholar 

  36. Fornalski KW, Dobrzynski L (2009) Ionising radiation and the health of nuclear industry workers. Int J Low Radiation 6:57–78

    Article  CAS  Google Scholar 

  37. Matanoski GM (1991) Health effects of low-level radiation in shipyard workers. Final Report. Report No. DOE DE-AC02-79EV10095. U.S. Department of Energy, Washington, DC

    Google Scholar 

  38. Spousler R, Cameron JR (2005) Nuclear shipyard worker study (1980–1988): a large cohort exposed to low-dose-rate gamma radiation. Int J Low Radiat 1:463–478

    Article  Google Scholar 

  39. Wilkinson GS, Trieff N, Graham R et al (2000) Final Report. Study of mortality among female nuclear weapons workers. Grant Numbers: 1R01 OHO3274, R01/CCR214546, R01/CCR61 2934-01. National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  40. Gilbert ES, Omohundro E, Buchanan JA et al (1993) Mortality of workers at the Hanford site: 1945–1986. Health Phys 64:577–590

    Article  CAS  PubMed  Google Scholar 

  41. Boice JD, Cohen SS, Mumma MT et al (2006) Mortality among radiation workers at Rocketdyne (Atomics International), 1948–1999. Radiat Res 166:98–115

    Article  CAS  PubMed  Google Scholar 

  42. Schubauer-Berigan MK, Macievic GV, Utterback DF et al (2005) An epidemiologic study of mortality and radiation-related risk among workers at the Idaho Engineering and Environmental Laboratory, a U.S. Department of energy facility. HHS (NIOSH) Publication No. 2005–131, Cincinnati, OH

    Google Scholar 

  43. Zablotska LB, Ashmore JP, Howe GR (2004) Analysis of mortality among Canadian nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res 161:633–641

    Article  CAS  PubMed  Google Scholar 

  44. Ashmore JP, Krewski D, Ziellnski JM et al (1998) First analysis of mortality and occupational radiation exposure on the National Dose Registry of Canada. Am J Epidemiol 148:564–574

    CAS  PubMed  Google Scholar 

  45. Atkinson WD, Law DV, Bromley KJ, Inskip HM (2004) Mortality of employees of the United Kingdom Atomic Energy Authority, 1946–97. Occup Environ Med 61:577–585

    Article  CAS  PubMed  Google Scholar 

  46. McGeoghegan D, Binks K (2000) The mortality and cancer morbidity experience of workers at the Springfields uranium production facility, 1946–95. J Radiol Prot 20:111–137

    Article  CAS  PubMed  Google Scholar 

  47. McGeoghegan D, Binks K (2000) The mortality and cancer morbidity experience of workers at the Capenhurst uranium enrichment facility 1946–95. J Radiol Prot 20:381–401

    Article  CAS  PubMed  Google Scholar 

  48. McGeoghegan D, Binks K (2001) The mortality and cancer morbidity experience of employees at the Chapelcross plant of British Nuclear Fuels plc, 1955–95. J Radiol Prot 21:221–250

    Article  CAS  PubMed  Google Scholar 

  49. Carpenter LM, Beral V, Smith PG (1998) Cancer mortality in relation to monitoring for radio-nuclide exposure in three UK nuclear industry workforces. Br J Cancer 78:1224–1232

    CAS  PubMed  Google Scholar 

  50. Simmons JA (2009) Response to ‘more on the risk of cancer among nuclear workers’. Letter to the Editor. J Radiol Prot 29:295–296

    Article  CAS  PubMed  Google Scholar 

  51. Muirhead CR, Goodill AA, Haylock RGE et al (1999) Occupational radiation exposure and mortality:second analysis of the National Registry of Radiation Workers. J Radiol Prot 19:3–26

    Article  CAS  PubMed  Google Scholar 

  52. Muirhead CR et al (2009) Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br J Cancer 100:206–212

    Article  CAS  PubMed  Google Scholar 

  53. Braestrup CB (1958) Past and present radiation exposure to radiologists from the point of view of life expectancy. Am J Roentgen Rad Ther Nucl Med 78:507–519

    Google Scholar 

  54. Berrington A, Darby SC, Weiss HA et al (2001) 100 years of observation on British radiologists: mortality from cancer and other causes 1987–1997. Br J Radiol 74:507–519

    CAS  PubMed  Google Scholar 

  55. Daunt N (2002) Decreased cancer mortality of British radiologists. Br J Radiol 75:639

    CAS  PubMed  Google Scholar 

  56. Smith PG, Doll R (1981) Mortality from cancer and all causes among British radiologists. Br J Radiol 54:187–194

    Article  CAS  PubMed  Google Scholar 

  57. Doll R (2005) Mortality of British radiologists: a lecture note. J Radiat Res 46:123–129

    Article  PubMed  Google Scholar 

  58. Daunt N (2002) Decreased cancer mortality of British radiologists. Br J Radiol 75:639–640

    CAS  PubMed  Google Scholar 

  59. Luckey TD (2008) Radiation hormesis overview. RSO Mag 8:22–39

    Google Scholar 

  60. de Vathaire F, Schumberger M, Delisle MJ et al (1997) Leukaemias and cancers following I–131 administration for thyroid cancer. Br J Cancer 75:734–739

    PubMed  Google Scholar 

  61. Franklyn JA, Maisonneuve P, Sheppard M et al (1999) Cancer incidence and mortality after radioiodine treatment for hyperthyroidism: a population-based cohort study. Lancet 353: 2111–2115

    Article  CAS  PubMed  Google Scholar 

  62. Rogel A, Carre N, Amoros E et al (2005) Mortality of workers exposed to ionizing radiation at the French National Electricity Company. Am J Indust Med 47:72–82

    Article  Google Scholar 

  63. Hammer GP, Fehringer F et al (2008) Exposure and mortality in a cohort of German nuclear power workers. Radiat Environ Biophys 47:95–99

    Article  PubMed  Google Scholar 

  64. Gros H, Chevalier A et al (2002) Epidemiological surveillance at Electricite de France-Gaz de France: health assessment of nuclear power plant employees between 1993 and 1998. Occup Med 52:35–44

    Article  CAS  Google Scholar 

  65. Habib RR, Abdallah SM, Law M, Kaldor J (2006) Cancer incidence among Australian nuclear industry workers. J Occup Health 48:358–365

    Article  CAS  PubMed  Google Scholar 

  66. Mayya YS (2005) A study of cancer mortality among indian atomic energy. In: Proceedings of the 48th Annual Meeting of the Japan Radiation Research Society/the First Asian Congress of Radiation Research, Research Institute for Radiation Biology and Medicine. Hiroshima University, Japan, Abstract S11–S14; 89–90

    Google Scholar 

  67. Tokarskaya ZB, Okladnikova ND, Belyaeva ZD et al (1997) Multifactorial analysis of lung cancer dose response relationships for workers at the Mayak nuclear enterprise. Health Phys 73:899–905

    Article  CAS  PubMed  Google Scholar 

  68. Tokarskaya ZB, Zhuntova G V, Scott BR et al (2006) Influence of alpha and gamma radiations and non-radiation risk factors on the incidence of malignant liver tumors among Mayak workers. Health Phys 91:296–310

    Article  CAS  PubMed  Google Scholar 

  69. Ivanov VK, Gorski AI, Maksioutov MA et al (2001) Mortality among the Chernobyl emergency workers: estimation of radiation risks (preliminary analysis). Health Phys 81:514–521

    Article  CAS  PubMed  Google Scholar 

  70. Murray CJL, Kulkarni SC, Michaud C et al (2006) Eight Americas: investigating mortality disparities across races, counties, and race-counties in the United States. PloS Med 3(9):e260

    Article  PubMed  Google Scholar 

  71. Sanders CL (2006) Hormesis as a confounding factor in epidemiological studies of radiation carcinogenesis. Korean Assoc Radiat Prot 31:69–89

    CAS  Google Scholar 

  72. Sanders CL, Scott BR (2008) Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose Response 6:53–79

    Article  CAS  Google Scholar 

  73. Chen WL, Luan YC, Shieh MC et al (2004) Is chronic radiation an effective prophylaxis against cancer? J Am Physicians Surg 9:6–10

    Google Scholar 

  74. Cameron JR (2002) Correspondence: radiation increased the longevity of British radiologists. Br J Radiol 75:637–639

    CAS  PubMed  Google Scholar 

  75. Mortazavi SMJ, Ikushima T (2006) Open questions regarding implications of radioadaptive response in the estimation of the risks of low-level exposures in nuclear workers. Int J Low Radiat 2:88–96

    Article  CAS  Google Scholar 

  76. Wilkinson GS, Trieff N, Graham R et al (2000) Final Report. Mortality among female nuclear weapons workers. NIOSH, Atlanta

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Evidence Negating the Healthy Worker Eff ect. In: Sanders, C.L. (eds) Radiation Hormesis and the Linear-No-Threshold Assumption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03720-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03720-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03719-1

  • Online ISBN: 978-3-642-03720-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics