Skip to main content

Abstract

Pump thrombosis is one of the most severe adverse events in the use of ventricular assist device (VAD) systems. The blood coagulation system is activated by all VAD systems via several mechanisms. The blood contact to the artificial materials of VAD pumps and cannulas triggers the coagulation cascade as well as high shear stress due to high flow velocities, small gaps, or high-speed moving parts (the impeller of rotary blood pumps) [1]. Areas of flow stagnation represent preferred thrombus developing sites as well as areas with recirculation vortices. Heat spots, e.g., produced by mechanical bearings, often are subjected to thrombus buildup when low-flow situations impair washout and thus the necessary cooling. To prevent thrombosis careful consideration of the three following factors in the use of VAD is important:

  • Low activation of the coagulation system by a good hydrodynamic design. This also applies to running the device in the specified optimal range of operation.

  • A good washout. Kinks and other causes obstructing the flow path like cannula malposition have to be avoided. A small clearance of the apical inflow cannula to the ventricle wall will likely promote the risk of wedge thrombus genesis.

  • Sufficient anticoagulation and anti-aggregation therapy are most important [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Oeveren W (1995) Biomaterials for rotary blood pumps. Artif Organs 19(7):603–607

    Article  PubMed  Google Scholar 

  2. Adatya S, Bennett MK (2015) Anticoagulation management in mechanical circulatory support. J Thorac Dis 7(12):2129–2138

    PubMed  PubMed Central  Google Scholar 

  3. Adamson RM, Mangi AA, Kormos RL, Farrar DJ, Dembitsky WP (2015) Principles of HeartMate II implantation to avoid pump malposition and migration. J Card Surg 30(3):296–299

    Article  PubMed  Google Scholar 

  4. Hubbert L, Sundbom P, Loebe M, Peterzen B, Granfeldt H, Ahn H (2014) Acoustic analysis of a mechanical circulatory support. Artif Organs 38(7):593–598

    Article  PubMed  Google Scholar 

  5. Yost GL, Royston TJ, Bhat G, Tatooles AJ (2016) Acoustic characterization of axial flow left ventricular assist device operation in vitro and in vivo. ASAIO J 62(1):46–55

    Article  PubMed  Google Scholar 

  6. Uriel N, Morrison KA, Garan AR, Kato TS, Yuzefpolskaya M, Latif F et al (2012) Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol 60(18):1764–1775

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chorpenning K, Brown MC, Voskoboynikov N, Reyes C, Dierlam AE, Tamez D (2014) HeartWare controller logs a diagnostic tool and clinical management aid for the HVAD pump. ASAIO J 60(1):115–118

    Article  PubMed  Google Scholar 

  8. Jorde UP, Aaronson KD, Najjar SS, Pagani FD, Hayward C, Zimpfer D et al (2015) Identification and management of pump thrombus in the heartware left ventricular assist device system: a novel approach using log file analysis. JACC Heart Fail 3(11):849–856

    Article  PubMed  Google Scholar 

  9. Kaufmann F, Hormandinger C, Stepanenko A, Kretzschmar A, Soltani S, Krabatsch T et al (2014) Acoustic spectral analysis for determining pump thrombosis in rotary blood pumps. ASAIO J 60(5):502–507

    Article  CAS  PubMed  Google Scholar 

  10. Starling RC, Moazami N, Silvestry SC et al (2014) Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med 370:33–40

    Article  CAS  PubMed  Google Scholar 

  11. Kirklin JK, Naftel DC, Kormos RL et al (2014) Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J Heart Lung Transplant 33:12–22

    Article  PubMed  Google Scholar 

  12. Najjar SS, Slaughter MS, Pagani FD et al (2014) An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant 33:23–34

    Article  PubMed  Google Scholar 

  13. Soltani S, Kaufmann F et al (2015) Design changes in continuous-flow left ventricular assist devices and life threatening pump malfunctions. Eur J Cardiothoracic Surg 47(6):984–989

    Article  Google Scholar 

  14. Uriel N, Morrison KA et al (2012) Development of a novel echocardiograph ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist device. The Columbia Ramp study. JACC 60(18):1764–1775

    Article  PubMed  PubMed Central  Google Scholar 

  15. Uriel N, Levin AP et al (2015) Left ventricular decompression during speed optimization ramps in patients supported by continuous-flow left ventricular assist device: device-specific performance characteristics and impact on diagnostic algorithms. J Card Fail 21(10):785–791

    Article  PubMed  Google Scholar 

  16. Grinstein J, Kruse E et al (2016) Screening for outflow cannula malfunction of left ventricular assist devices (LVADs) with the use of Doppler Echocardiography: new LVAD-specific reference values for contemporary devices. J Card Fail 22(10):808–814

    Article  PubMed  PubMed Central  Google Scholar 

  17. Potapov EV, Krabatsch T, Buz S, Falk V, Kempfert J (2015) Cerebral protection system applied during washout of thrombus occluding inflow cannula of HeartWare HVAD left ventricular assist device. J Heart Lung Transplant 34(12):1640–1641. doi:10.1016/j.healun.2015.10.017

    Article  PubMed  Google Scholar 

  18. Scandroglio AM, Kaufmann F, Pieri M, Kretzschmar A, Müller M, Pergantis P, Dreysse S, Falk V, Krabatsch T, Potapov EV (2016) Diagnosis and treatment algorithm for blood flow obstructions in patients with left ventricular assist device. J Am Coll Cardiol 67(23):2758–2768. doi:10.1016/j.jacc.2016.03.573

    Article  PubMed  Google Scholar 

  19. Krabatsch T, Drews T, Potapov E, Weng Y, Pasic M, Hetzer R (2014) Different surgical strategies for implantation of continuous-flow VADs-Experience from Deutsches Herzzentrum Berlin. Ann Cardiothorac Surg 3(5):472–474. doi:10.3978/j.issn.2225-319X.2014.09.06

    PubMed  PubMed Central  Google Scholar 

  20. Tellor B, Smith J et al (2014) the use of eptifibatide for suspected pump thrombus or thrombosis in patients with left ventricular assist devices. J Heart Lung Transplant 33:94–101

    Article  PubMed  Google Scholar 

  21. Al-Quthami A, Jumean M et al (2012) Eptifibatide for the treatment of HeartMate II left ventricular assist device thrombosis. Circ Heart Fail 5:68–70

    Article  Google Scholar 

  22. Jorde U, Aaronson K, Najjar S et al (2015) Identification and management of pump thrombus in the HeartWare left ventricular assist device system. A novel approach using log-file analysis. JACC Heart Failure 3(11):849–856

    Article  PubMed  Google Scholar 

  23. Stulak J, Dunlay S, Sharma S et al (2015) Treatment of device thrombus in the HeartWare HVAD: Success and outcome depend significantly on the initial treatment strategy. J Heart Lung Transplant 34:1535–1541

    Article  PubMed  Google Scholar 

  24. Maria Schürner A, Wilhelm MJ, Falk V, Ruschitzka F, Bettex D, Rudiger A (2015) Recurrent clotting of a continuous-flow right ventricular assist device--repeated thrombolysis with two different protocols. J Cardiothorac Vasc Anesth 29(6):1614–1617

    Article  PubMed  Google Scholar 

  25. Webber BT, Panos AL, Rodriguez-Blanco YF (2016) Intravenous thrombolytic therapy for patients with ventricular assist device thrombosis: an attempt to avoid reoperation. Ann Card Anaesth 19(1):192–196

    Article  PubMed  PubMed Central  Google Scholar 

  26. Raffa GM, D’Ancona G, Sciacca S, Pietrosi A, Hernandez Baravoglia CM, Turrisi M et al (2015) Systemic or endoventricular thrombolysis to treat HeartWare left ventricle assist device thrombosis: a clinical dilemma. Artif Organs 39:526–529

    Article  PubMed  Google Scholar 

  27. Raffa GM, D’Ancona G, Romano G, Falletta C, Sciacca S, Todaro C et al (2015) Should device replacement be the first choice strategy in continuous-flow left ventricular device thrombosis? Analysis of 9 events and results after endoventricular thrombolysis. Int J Cardiol 178:159–161

    Article  PubMed  Google Scholar 

  28. Abraham J, Remick JD, Caulfield T et al (2015) Left ventricular assist device outflow cannula obstruction treated with percutaneous endovascular stenting. Circ Heart Fail 8(1):229–230

    Article  PubMed  Google Scholar 

  29. Pham DT, Kapur NK, Dermody M, Halin N (2015) Stenting of an outflow graft obstruction after implantation of a continuous-flow, axial-flow left ventricular assist device. J Thorac Cardiovasc Surg 150(1):11–12

    Article  Google Scholar 

  30. Pieri M, Scandroglio AM, Kukucka M, et al (2016) Heart failure after five years on left ventricular assist device: diagnosis and treatment of out-flow graft obstruction. ASAIO J 2017 Jan/Feb;63(1):e1-e2. doi: 10.1097/MAT.0000000000000370

    Google Scholar 

  31. Hanke JS, El Sherbini A, Rojas SV, Avsar M, Shrestha M, Schmitto JD (2016) Aortic outflow graft stenting in patient with left ventricular assist device outflow graft thrombosis. Artif Organs 40(4):414–6. doi: 10.1111/aor.12569

    Google Scholar 

  32. Naber CK, Ghanem A, Abizaid AA et al (2012) First-in-man use of a novel embolic protection device for patients undergoing transcatheter aortic valve implantation. EuroIntervention 8:43–50

    Article  PubMed  Google Scholar 

  33. Lansky AJ, Schofer J, Tchetche D et al (2015) A prospective randomized evaluation of the TriGuard HDH embolic DEFLECTion device during transcatheter aortic valve implantation: results from the DEFLECT III trial. Eur Heart J 36:2070–2207

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Potapov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Potapov, E., Kaufmann, F., Scandroglio, A.M., Pieri, M. (2017). Pump Thrombosis. In: Montalto, A., Loforte, A., Musumeci, F., Krabatsch, T., Slaughter, M. (eds) Mechanical Circulatory Support in End-Stage Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-43383-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43383-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43381-3

  • Online ISBN: 978-3-319-43383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics