Skip to main content

Physiologically Based Toxicokinetic (PBTK) Modeling in Ecotoxicology

  • Chapter
  • First Online:
Ecotoxicology Modeling

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 2))

Abstract

Physiologically based toxicokinetic [(PBTK), or alternatively referred to as physiologically based pharmacokinetic (PBPK)] models are quantitative descriptions of absorption, distribution, metabolism, and excretion of chemicals in biota. PBTK models are increasingly being used as an effective tool for designing toxicology experiments and for conducting extrapolations essential for risk assessments. This chapter describes the basic concepts, equations, parameters, and software essential for developing PBTK models. QSAR methods for estimating input parameters as well as data sources containing relevant parameters for model development in rats, mice, cattle, birds, and fish are summarized. Model templates for creating PBTK models in fish and terrestrial species are presented. Several examples of model simulations are presented along with a brief discussion of how PBTK models can be applied to make significant advances in ecotoxicology and ecotoxicological risk assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen ME, Clewell HJ III, Gargas ML (1991) Physiologically-based pharmacokinetic modeling with dichloromethane, its metabolite carbon monoxide and blood carboxyhemoglobin in rats and humans. Toxicol Appl Pharmacol 108: 14–27

    Article  CAS  Google Scholar 

  2. United States Environmental Protection Agency (U.S. E.P.A.) (2006) Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment (Final Report). U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  3. Gibaldi M, Perrier D (1982) Pharmacokinetics. Marcel Dekker, New York

    Google Scholar 

  4. Chiu WA, Barton HA, DeWoskin RS, Schlosser P, Thompson CM, Sonawane B, Lipscomb JC, Krishnan K (2007) Evaluation of physiologically based pharmacokinetic models for use in risk assessment. J Appl Toxicol 27: 218–237

    Article  CAS  Google Scholar 

  5. Krishnan K, Andersen ME (2007) Physiologically based pharmacokinetic modeling in toxicology. In: Hayes AW (ed) Principles and methods of toxicology, 5th edn. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  6. Haddad S, Pelekis M, Krishnan K (1996) A methodology for solving physiologically based pharmacokinetic models without the use of simulation softwares. Toxicol Lett 85: 113–126

    Article  CAS  Google Scholar 

  7. Krishnan K, Andersen ME (2001) Physiologically based pharmacokinetic modeling in toxicology. In: Hayes AW (ed) Principles and methods of toxicology, 4th edn. Taylor & Francis, Philadelphia, PA

    Google Scholar 

  8. Krishnan K, Gargas ML, Fennell TR, Andersen ME (1992) A physiologically-based description of ethylene oxide dosimetry in the rat. Toxicol Ind Health 8: 121–140

    CAS  Google Scholar 

  9. Weber LJ (1982) Aquatic toxicology. Raven Press, New York

    Google Scholar 

  10. Klaassen CD (1999) Casarett and Doull’s toxicology: The basic science of poisons: Companion handbook, 5th edn. McGraw-Hill, Health Professions Division, New York

    Google Scholar 

  11. Ramsey JC, Andersen ME (1984) A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol 73: 159–175

    Article  CAS  Google Scholar 

  12. McDougal JN, Jepson GW, Clewell HJ, MacNaughton MG, Andersen ME (1986) A physiological pharmacokinetic model for dermal absorption of vapors in the rat. Toxicol Appl Pharmacol 85: 286–294

    Article  CAS  Google Scholar 

  13. Gerlowski LE, Jain RK (1983) Physiologically based pharmacokinetic modeling: Principles and applications. J Pharm Sci 72: 1103–1127

    Article  CAS  Google Scholar 

  14. D’Souza RW, Francis WR, Andersen MW (1988) Physiological model for tissue glutathione depletion and decreased resynthesis after ethylene dichloride exposures. J Pharmacol Exp Ther 245: 563–568

    Google Scholar 

  15. Nichols JW, Schultz IR, Burkhard LP (2006) In vitro–in vivo extrapolation of quantitative hepatic biotransformation data for fish I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models. Aquat Toxicol 78: 74–90

    Article  CAS  Google Scholar 

  16. Dewoskin RS, Thompson CM (2008) Renal clearance parameters for PBPK model analysis of early lifestage differences in the disposition of environmental toxicants. Regul Toxicol Pharmacol 51: 66–86

    Article  CAS  Google Scholar 

  17. Mitruka BM, Rawnley HM (1977) Clinical biochemical and haematological reference values in normal and experimental animals. Masson Publishing, New York

    Google Scholar 

  18. Arms AD, Travis CC (1988) Reference physiological parameters in pharmacokinetic modeling. Office of Health and Environmental Assessment, US EPA, Washington, DC. NTIS PB 88-196019

    Google Scholar 

  19. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Belisle RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13: 407–484

    CAS  Google Scholar 

  20. Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL, Elonen CM (1996) A physiologically based toxicokinetic model for dermal absorption of organic chemicals by fish. Fundam Appl Toxicol 31: 229–242

    Article  CAS  Google Scholar 

  21. Lien GJ, Nichols JW, McKim JM, Gallinat CA (1994) Modeling the accumulation of three waterborne chlorinated ethanes in fathead minnows (Pimephales promelas): A physiologically based approach. Environ Toxicol Chem 13: 1195–1205

    CAS  Google Scholar 

  22. Gallo JM, Lam FC, Perrier DG (1987) Area method for the estimation of partition coefficients for physiological pharmacokinetic models. J Pharmacokinet Biopharm 15: 271–280

    Article  CAS  Google Scholar 

  23. Lin JH, Sugiyama Y, Awazu S, Hanano M (1982) In vitro and in vivo evaluation of the tissue to blood partition coefficients for physiological pharmacokinetic models. J Pharmacokinet Biopharm 10: 637–647

    Article  CAS  Google Scholar 

  24. Gargas ML, Burgess RJ, Voisard DE, Cason GH, Andersen ME (1989) Partition coefficients of low molecular weight volatile chemicals in various liquids and tissues. Toxicol Appl Pharmacol 98: 87–99

    Article  CAS  Google Scholar 

  25. Sato A, Nakajima T (1979) Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil. Br J Ind Med 36: 231–234

    CAS  Google Scholar 

  26. Béliveau M, Tardif R, Krishnan K (2003) Quantitative structure–property relationships for physiologically based pharmacokinetic modeling of volatile organic chemicals in rats. Toxicol Appl Pharmacol 189: 221–232

    Article  Google Scholar 

  27. Payne MP, Kenny LC (2002) Comparison of models for the estimation of biological partition coefficients. J Toxicol Environ Health A 65: 897–931

    Article  CAS  Google Scholar 

  28. Poulin P, Krishnan K (1996) A mechanistic algorithm for predicting blood:air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin. Toxicol Appl Pharmacol 136: 131–137

    Article  CAS  Google Scholar 

  29. Poulin P, Krishnan K (1996) A tissue composition-based algorithm for predicting tissue:air partition coefficients of organic chemicals. Toxicol Appl Pharmacol 136: 126–130

    Article  CAS  Google Scholar 

  30. Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL (1991) Physiologically based toxicokinetic modeling of three waterborne chloroethanes in rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 110: 374–389

    Article  CAS  Google Scholar 

  31. DeJongh J, Verhaar HJM, Hermens JLM (1997) A quantitative property–property relationship (QPPR) approach to estimate in vitro tissue–blood partition coefficients of organic chemicals in rats and humans. Arch Toxicol 72: 17–25

    Article  CAS  Google Scholar 

  32. Bertelsen S, Hoffman AD, Gallinat CA, Elonen CM, Nichols JW (1998) Evaluation of log Pow and tissue lipid content as predictors of chemical partitioning to fish tissues. Environ Toxicol Chem 17: 1447–1455

    CAS  Google Scholar 

  33. Nichols JW, Schultz IR, Burkhard LP (2006) In vitro–in vivo extrapolation of quantitative hepatic biotransformation data for fish. I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models. Aquat Toxicol 78: 74–90

    Article  CAS  Google Scholar 

  34. Nichols JW, Fitzsimmons PN, Burkhard LP (2007) In vitro–in vivo extrapolation of quantitative hepatic biotransformation data for fish. II. Modeled effects on chemical bioaccumulation. Environ Toxicol Chem 26: 1304–1319

    CAS  Google Scholar 

  35. Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, Houston JB, Lake BG, Lipscomb JC, Pelkonen OR, Tucker GT, Rostami-Hodjegan A (2007) Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: Reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab 8: 33–45

    Article  CAS  Google Scholar 

  36. Lipscomb JC, Poet TS (2008) In vitro measurements of metabolism for application in pharmacokinetic modeling. Pharmacol Ther 118: 82–103

    Article  CAS  Google Scholar 

  37. Krishnan K, Gargas ML, Andersen ME (1993) In vitro toxicology and risk assessment. Altern Meth Toxicol 9: 185–203

    CAS  Google Scholar 

  38. Béliveau M, Krishnan K (2005) A spreadsheet program for modeling quantitative structure–pharmacokinetic relationships for inhaled volatile organics in humans. SAR QSAR Environ Res 16: 63–77

    Article  Google Scholar 

  39. Basak SC, Mills D, Gute BD (2006) Prediction of tissue: Air partition coefficients – Theoretical vs. experimental methods. SAR QSAR Environ Res 17: 515–32

    Article  CAS  Google Scholar 

  40. Gargas ML, Seybold PG, Andersen ME (1988) Modeling the tissue solubilities and metabolic rate constant (Vmax) of halogenated methanes, ethanes, and ethylenes. Toxicol Lett 43: 235–256

    Article  CAS  Google Scholar 

  41. Waller CL, Evans MV, McKinney JD (1996) Modeling the cytochrome P450-mediated metabolism of chlorinated volatile organic compounds. Drug Metab Dispos 24: 203–210

    CAS  Google Scholar 

  42. Tardif R, Charest-Tardif G, Brodeur J, Krishnan K (1997) Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Toxicol Appl Pharmacol 144: 120–134

    Article  CAS  Google Scholar 

  43. Poet TS, Weitz KK, Gies RA, Edwards JA, Thrall KD, Corley RA, Tanojo H, Hui X, Maibac HI, Wester RC (2002) PBPK modeling of the percutaneous absorption of perchloroethylene from a soil matrix in rats and humans. Toxicol Sci 67: 17–31

    CAS  Google Scholar 

  44. RijksInstituut voor Volksgezondheid en Milieu/National institute of public health and the environment (RIVM) (1999) Model for estimating initial burden and daily absorption of lipophylic contaminants in cattle, Report no. 643810 005. RIVM, The Netherlands

    Google Scholar 

  45. Craigmill AL (2003) A physiologically based pharmacokinetic model for oxytetracycline residues in sheep. J Vet Pharmacol Ther 26: 55–63

    Article  CAS  Google Scholar 

  46. Buur JL, Baynes RE, Craigmill AL, Riviere JE (2005) Development of a physiologic-based pharmacokinetic model for estimating sulfamethazine concentrations in swine and application to prediction of violative residue in edible tissues. Am J Vet Res 66: 1686–1693

    Article  CAS  Google Scholar 

  47. Buur JL, Baynes RE, Smith G, Riviere JE (2006) Use of probabilistic modeling within a physiologically based pharmacokinetic model to predict sulfamethazine residue withdrawal times in edible tissues in swine. Antimicrob Agents Chemother 50: 2344–2351

    Article  CAS  Google Scholar 

  48. Villesen HH, Foster DJR, Upton RN, Somogyl AA, Martinez A, Grant C (2006) Cerebral kinetics of oxycodone in conscious sheep. J Pharm Sci 95: 1666–1676

    Article  CAS  Google Scholar 

  49. Jensen ML, Foster D, Upton R, Grant C, Martinez A, Somogyi A (2007) Comparison of cerebral pharmacokinetics of buprenorphine and norbuprenorphine in an in vivo sheep model. Xenobiotica 37: 441–457

    Article  CAS  Google Scholar 

  50. Van Eijkeren JC, Zeilmaker MJ, Kan CA, Traag WA, Hoogenboom LA (2006) A toxicokinetic model for the carry-over of dioxins and PCBs from feed and soil to eggs. Food Addit Contam 23: 509–517

    Article  Google Scholar 

  51. Altman PL, Dittmer DS (1971) Respiration and circulation. Fes Amer Soc Exptl Biol, Bethesda, MD

    Google Scholar 

  52. Farrell AP (1991) Circulation of body fluids. In: Posser CL (ed) Environmental and metabolic animal physiology, Vol. 4, 4th edn. Wilex-Liss, New York

    Google Scholar 

  53. Piiper J, Drees F, Scheid P (1970) Gas exchange in the domestic fowl during spontaneous breathing and artificial ventilation. Resp Physiol 9: 234–245

    Article  CAS  Google Scholar 

  54. Boelkins JN, Mueller WJ, Hall KL (1973) Cardiac output distribution in the laying hen during shell formation. Comp Biochem Physiol A 46: 735–743

    Article  CAS  Google Scholar 

  55. Moynihan JB, Edwards NA (1975) Blood flow in the reproductive tract of the domestic hen. Comp Biochem Physiol A 51: 745–748

    Article  CAS  Google Scholar 

  56. Sapirstein LA, Hartman FA (1959) Cardiac output and its distribution in the chicken. Am J Physiol 196: 751–752

    CAS  Google Scholar 

  57. Freeman BM (1971) The corpuscles and physical characteristics of blood. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, Vol. 2. Academic press, London

    Google Scholar 

  58. Jean-Blain M, Alquier J (1948) Les aliments d’origine animale destinés à l’homme. Vigot, Paris

    Google Scholar 

  59. Clackson MJ, Richards TG (1971) The liver with special reference to bile formation. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, Vol 2. Academic press, London

    Google Scholar 

  60. Wolfenson D, Berman A, Frei YF, Snapir N (1978) Measurement of blood flow distribution by radioactive microspheres in the laying hen (Gallus domesticus). Comp Biochem Physiol A 61: 549–555

    Article  Google Scholar 

  61. Wolfenson D, Frei N, Shapir N, Berman A (1981) Heat stress effect on capillary blood flow and its redistribution in the laying hen. Pflügers Arch 390: 86–93

    Article  CAS  Google Scholar 

  62. Gilbert AB (1971) The female reproductive effort. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, Vol 3. Academic Press, London

    Google Scholar 

  63. Wight PAL (1971) The pineal gland. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, Vol 1. Academic Press, London

    Google Scholar 

  64. Payne LN (1971) The lymphoid system. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, Vol 2. Academic Press, London

    Google Scholar 

  65. Skadhauge E (1983) Excretion. In: Freeman BM (ed) Physiology and biochemistry of the domestic fowl, Vol. 4. Academic Press, London

    Google Scholar 

  66. Grubb BR (1983) Allometric relations of cardiovascular function in birds. Am J Physiol 245: H592–H597

    Google Scholar 

  67. Hamilton PB, Garlich JD (1971) Aflatoxin as a possible cause of fatty liver syndrome in laying hens. Poultry Sci 50: 800–804

    CAS  Google Scholar 

  68. Nichols JW, McKim JM, Andersen ME, Gargas ML, Clewell HJ III, Erickson RJ (1990) A physiologically based toxicokinetic model for the uptake and disposition of waterborne organic chemicals in fish. Toxicol Appl Pharmacol 106: 433–447

    Article  CAS  Google Scholar 

  69. Erickson RJ, McKim JM (1990) A model for exchange of organic chemicals at fish gills: Flow and diffusion limitations. Aquat Toxicol 18: 175–198

    Article  CAS  Google Scholar 

  70. Bungay PM, Debrick RL, Guarino AM (1976) Pharmacokinetic modeling of the digfish shark (Squalus acanthias): Distribution and urinary and biliary excretion of phenol red and its glucuronide. J Pharmacokinet Biopharm 4: 377–388

    Article  CAS  Google Scholar 

  71. Zaharko DS, Debrick RL, Oliviero VT (1972) Prediction of the distribution of methotrexate in the sting rays Dasyatidae sabina and sayi by use of a model developed in mice. Comp Biochem Physiol A 42: 183–194

    Article  CAS  Google Scholar 

  72. Law FCP, Abedini S, Kennedy CJ (1991) A biologically based toxicokinetic model for pyrene in Rainbow trout. Toxicol Appl Pharmacol 110: 390–402

    Article  CAS  Google Scholar 

  73. Nichols JW, Fitzsimmons PN, Whiteman FW, Dawson TD, Babeu L, Juenemann J (2004) A Physiologically based toxicokinetic model for dietary uptake of hydrophobic organic compounds by fish. I. Feeding studies with 2,2,5,5-tetrachlorobiphenyl. Toxicol Sci 77: 206–218

    Article  CAS  Google Scholar 

  74. Abbas R, Hayton WL (1997) A physiologically based pharmacokinetic and pharmacodynamic model for paraoxon in rainbow trout. Toxicol Appl Pharmacol 145: 192–201

    Article  CAS  Google Scholar 

  75. Nichols JW, Jensen KM, Tietge JE, Johnson RD (1998) Physiologically based toxicokinetic model for maternal transfer of 2,3,7,8-tetrachlorodibenzo-p-dioxin in brook trout (Salvelinus fontinalis). Environ Toxicol Chem 17: 2422–2434

    CAS  Google Scholar 

  76. Lien GJ, McKim JM, Hoffman AD, Jenson CT (2001) A physiologically based toxicokinetic model for lake trout (Salvelinus namaycush). Aquat Toxicol 51: 335–350

    Article  CAS  Google Scholar 

  77. Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL, Gallinat CA (1993) Physiologically-based toxicokinetic modeling of three waterborne chloroethanes in channel catfish, Ictalurus punctatus. Aquat Toxicol 27: 83–112

    Article  CAS  Google Scholar 

  78. Lien GJ, McKim JM (1993) Predicting branchial and cutaneous uptake of 2,2,5,5-tetrachlorobiphenyl in fathead minnows (Pimephales promelas) and Japanese medaka (Oryzias latipes): Rate limiting factors. Aquat Toxicol 27: 15–32

    Article  CAS  Google Scholar 

  79. Liao CM, Liang HM, Chen BC, Singh S, Tsai JW, Chou YH, Lin WT (2005) Dynamical coupling of PBPK/PD and AUC-based toxicity models for arsenic in tilapia Oreochromis mossambicus from blackfoot disease area in Taiwan. Environ Pollut 135: 221–233

    Article  CAS  Google Scholar 

  80. Ling MP, Liao CM, Tsai JW, Chen BC (2005) A PBTK/TD modeling-based approach can assess arsenic bioaccumulation in farmed Tilapia (Oreochromis mossambicus) and human health risks. Integr Environ Assess Manag 1: 40–54

    Article  CAS  Google Scholar 

  81. Andersen ME, MacNaughton MG, Clewell HJ III, Paustenbach DJ (1987) Adjusting exposure limits for long and short exposure period using a physiological pharmacokinetic model. Am Ind Hyg Ass J 48: 335–343

    CAS  Google Scholar 

  82. Benignus VA, Boyes WK, Bushnell PJ (1998) A dosimetric analysis of behavioral effects of acute toluene exposure in rats and humans. Toxicol Sci 43: 186–195

    CAS  Google Scholar 

  83. Clewell HJ III, Andersen ME, Barton HA (2002) A consistent approach for the application of pharmacokinetic modeling in cancer and noncancer risk assessment. Environ Health Perspect 110: 85–93

    Article  Google Scholar 

  84. Lipscomb JC, Ohanian EV (2007) Toxicokinetics and risk assessment. Informa Healthcare, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krishnan, K., Peyret, T. (2009). Physiologically Based Toxicokinetic (PBTK) Modeling in Ecotoxicology. In: Devillers, J. (eds) Ecotoxicology Modeling. Emerging Topics in Ecotoxicology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0197-2_6

Download citation

Publish with us

Policies and ethics